Properties

Label 2-108-27.20-c2-0-0
Degree $2$
Conductor $108$
Sign $-0.948 + 0.315i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.31 + 2.69i)3-s + (−5.13 + 0.905i)5-s + (−8.93 − 7.49i)7-s + (−5.51 − 7.10i)9-s + (16.7 + 2.95i)11-s + (−12.2 − 4.44i)13-s + (4.33 − 15.0i)15-s + (−24.5 + 14.1i)17-s + (−13.9 + 24.1i)19-s + (31.9 − 14.1i)21-s + (6.09 + 7.25i)23-s + (2.08 − 0.757i)25-s + (26.4 − 5.48i)27-s + (4.43 + 12.1i)29-s + (11.4 − 9.62i)31-s + ⋯
L(s)  = 1  + (−0.439 + 0.898i)3-s + (−1.02 + 0.181i)5-s + (−1.27 − 1.07i)7-s + (−0.613 − 0.789i)9-s + (1.52 + 0.268i)11-s + (−0.939 − 0.341i)13-s + (0.289 − 1.00i)15-s + (−1.44 + 0.834i)17-s + (−0.733 + 1.27i)19-s + (1.52 − 0.675i)21-s + (0.264 + 0.315i)23-s + (0.0832 − 0.0303i)25-s + (0.979 − 0.203i)27-s + (0.153 + 0.420i)29-s + (0.370 − 0.310i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 + 0.315i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.948 + 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.948 + 0.315i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (101, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ -0.948 + 0.315i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.0160103 - 0.0988713i\)
\(L(\frac12)\) \(\approx\) \(0.0160103 - 0.0988713i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (1.31 - 2.69i)T \)
good5 \( 1 + (5.13 - 0.905i)T + (23.4 - 8.55i)T^{2} \)
7 \( 1 + (8.93 + 7.49i)T + (8.50 + 48.2i)T^{2} \)
11 \( 1 + (-16.7 - 2.95i)T + (113. + 41.3i)T^{2} \)
13 \( 1 + (12.2 + 4.44i)T + (129. + 108. i)T^{2} \)
17 \( 1 + (24.5 - 14.1i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (13.9 - 24.1i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (-6.09 - 7.25i)T + (-91.8 + 520. i)T^{2} \)
29 \( 1 + (-4.43 - 12.1i)T + (-644. + 540. i)T^{2} \)
31 \( 1 + (-11.4 + 9.62i)T + (166. - 946. i)T^{2} \)
37 \( 1 + (19.3 + 33.4i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (0.663 - 1.82i)T + (-1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-9.15 + 51.8i)T + (-1.73e3 - 632. i)T^{2} \)
47 \( 1 + (-1.66 + 1.98i)T + (-383. - 2.17e3i)T^{2} \)
53 \( 1 - 14.7iT - 2.80e3T^{2} \)
59 \( 1 + (16.7 - 2.96i)T + (3.27e3 - 1.19e3i)T^{2} \)
61 \( 1 + (17.6 + 14.7i)T + (646. + 3.66e3i)T^{2} \)
67 \( 1 + (-50.8 - 18.5i)T + (3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (73.9 - 42.6i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (1.73 - 3.00i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (15.2 - 5.54i)T + (4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (31.4 + 86.4i)T + (-5.27e3 + 4.42e3i)T^{2} \)
89 \( 1 + (55.7 + 32.1i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-7.70 + 43.6i)T + (-8.84e3 - 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.27945883287020820645956411373, −12.75709577191358175879066966230, −11.89346382956203107348304464829, −10.76392872421045471363809718989, −9.964239121487113779890860695463, −8.860512385007333451944070050512, −7.19427906310310268166648756109, −6.26379968916086650820450028935, −4.20591806108513592907327800809, −3.69562651164830663089270973460, 0.07407348898484596878082526836, 2.67556117263918848827297239937, 4.60302697710901643560836742234, 6.40906918804332433233310302161, 6.93656546849231920117163117731, 8.579764519448023726838416149802, 9.369739446233303818816366191501, 11.31244003986529718448372029357, 11.90392116878124695375609820434, 12.64820550777744508820891851161

Graph of the $Z$-function along the critical line