# Properties

 Degree 2 Conductor $2^{2} \cdot 3^{3}$ Sign $0.961 + 0.275i$ Motivic weight 2 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.619 − 1.90i)2-s + (2.41 + 1.77i)3-s + (−3.23 + 2.35i)4-s + (0.463 + 2.62i)5-s + (1.87 − 5.70i)6-s + (4.34 − 5.18i)7-s + (6.48 + 4.68i)8-s + (2.70 + 8.58i)9-s + (4.70 − 2.50i)10-s + (18.5 + 3.26i)11-s + (−11.9 − 0.0296i)12-s + (−4.76 − 1.73i)13-s + (−12.5 − 5.05i)14-s + (−3.53 + 7.17i)15-s + (4.88 − 15.2i)16-s + (7.37 + 12.7i)17-s + ⋯
 L(s)  = 1 + (−0.309 − 0.950i)2-s + (0.806 + 0.591i)3-s + (−0.807 + 0.589i)4-s + (0.0926 + 0.525i)5-s + (0.312 − 0.950i)6-s + (0.621 − 0.740i)7-s + (0.810 + 0.585i)8-s + (0.300 + 0.953i)9-s + (0.470 − 0.250i)10-s + (1.68 + 0.297i)11-s + (−0.999 − 0.00246i)12-s + (−0.366 − 0.133i)13-s + (−0.896 − 0.361i)14-s + (−0.235 + 0.478i)15-s + (0.305 − 0.952i)16-s + (0.433 + 0.751i)17-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(3-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.961 + 0.275i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$108$$    =    $$2^{2} \cdot 3^{3}$$ $$\varepsilon$$ = $0.961 + 0.275i$ motivic weight = $$2$$ character : $\chi_{108} (7, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 108,\ (\ :1),\ 0.961 + 0.275i)$$ $$L(\frac{3}{2})$$ $$\approx$$ $$1.50265 - 0.210741i$$ $$L(\frac12)$$ $$\approx$$ $$1.50265 - 0.210741i$$ $$L(2)$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (0.619 + 1.90i)T$$
3 $$1 + (-2.41 - 1.77i)T$$
good5 $$1 + (-0.463 - 2.62i)T + (-23.4 + 8.55i)T^{2}$$
7 $$1 + (-4.34 + 5.18i)T + (-8.50 - 48.2i)T^{2}$$
11 $$1 + (-18.5 - 3.26i)T + (113. + 41.3i)T^{2}$$
13 $$1 + (4.76 + 1.73i)T + (129. + 108. i)T^{2}$$
17 $$1 + (-7.37 - 12.7i)T + (-144.5 + 250. i)T^{2}$$
19 $$1 + (28.7 + 16.6i)T + (180.5 + 312. i)T^{2}$$
23 $$1 + (11.3 + 13.5i)T + (-91.8 + 520. i)T^{2}$$
29 $$1 + (38.2 - 13.9i)T + (644. - 540. i)T^{2}$$
31 $$1 + (-4.43 - 5.28i)T + (-166. + 946. i)T^{2}$$
37 $$1 + (4.65 + 8.05i)T + (-684.5 + 1.18e3i)T^{2}$$
41 $$1 + (20.9 + 7.61i)T + (1.28e3 + 1.08e3i)T^{2}$$
43 $$1 + (42.0 + 7.40i)T + (1.73e3 + 632. i)T^{2}$$
47 $$1 + (-35.0 + 41.7i)T + (-383. - 2.17e3i)T^{2}$$
53 $$1 - 25.6T + 2.80e3T^{2}$$
59 $$1 + (-15.3 + 2.70i)T + (3.27e3 - 1.19e3i)T^{2}$$
61 $$1 + (48.6 + 40.8i)T + (646. + 3.66e3i)T^{2}$$
67 $$1 + (-11.8 + 32.5i)T + (-3.43e3 - 2.88e3i)T^{2}$$
71 $$1 + (-23.7 + 13.6i)T + (2.52e3 - 4.36e3i)T^{2}$$
73 $$1 + (-18.2 + 31.6i)T + (-2.66e3 - 4.61e3i)T^{2}$$
79 $$1 + (43.9 + 120. i)T + (-4.78e3 + 4.01e3i)T^{2}$$
83 $$1 + (0.482 + 1.32i)T + (-5.27e3 + 4.42e3i)T^{2}$$
89 $$1 + (34.1 - 59.2i)T + (-3.96e3 - 6.85e3i)T^{2}$$
97 $$1 + (19.7 - 111. i)T + (-8.84e3 - 3.21e3i)T^{2}$$
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}