Properties

Label 2-108-108.31-c2-0-9
Degree $2$
Conductor $108$
Sign $-0.819 - 0.573i$
Analytic cond. $2.94278$
Root an. cond. $1.71545$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.210 + 1.98i)2-s + (1.64 + 2.51i)3-s + (−3.91 + 0.836i)4-s + (−0.133 + 0.756i)5-s + (−4.64 + 3.79i)6-s + (3.08 + 3.67i)7-s + (−2.48 − 7.60i)8-s + (−3.60 + 8.24i)9-s + (−1.53 − 0.106i)10-s + (−7.79 + 1.37i)11-s + (−8.52 − 8.44i)12-s + (7.52 − 2.73i)13-s + (−6.65 + 6.90i)14-s + (−2.11 + 0.907i)15-s + (14.5 − 6.54i)16-s + (6.81 − 11.7i)17-s + ⋯
L(s)  = 1  + (0.105 + 0.994i)2-s + (0.547 + 0.836i)3-s + (−0.977 + 0.209i)4-s + (−0.0266 + 0.151i)5-s + (−0.774 + 0.632i)6-s + (0.440 + 0.524i)7-s + (−0.310 − 0.950i)8-s + (−0.400 + 0.916i)9-s + (−0.153 − 0.0106i)10-s + (−0.708 + 0.124i)11-s + (−0.710 − 0.703i)12-s + (0.578 − 0.210i)13-s + (−0.475 + 0.492i)14-s + (−0.141 + 0.0604i)15-s + (0.912 − 0.409i)16-s + (0.400 − 0.693i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.819 - 0.573i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.819 - 0.573i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108\)    =    \(2^{2} \cdot 3^{3}\)
Sign: $-0.819 - 0.573i$
Analytic conductor: \(2.94278\)
Root analytic conductor: \(1.71545\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{108} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 108,\ (\ :1),\ -0.819 - 0.573i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.448409 + 1.42296i\)
\(L(\frac12)\) \(\approx\) \(0.448409 + 1.42296i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.210 - 1.98i)T \)
3 \( 1 + (-1.64 - 2.51i)T \)
good5 \( 1 + (0.133 - 0.756i)T + (-23.4 - 8.55i)T^{2} \)
7 \( 1 + (-3.08 - 3.67i)T + (-8.50 + 48.2i)T^{2} \)
11 \( 1 + (7.79 - 1.37i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (-7.52 + 2.73i)T + (129. - 108. i)T^{2} \)
17 \( 1 + (-6.81 + 11.7i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (-11.9 + 6.89i)T + (180.5 - 312. i)T^{2} \)
23 \( 1 + (22.4 - 26.7i)T + (-91.8 - 520. i)T^{2} \)
29 \( 1 + (-38.1 - 13.8i)T + (644. + 540. i)T^{2} \)
31 \( 1 + (-14.9 + 17.8i)T + (-166. - 946. i)T^{2} \)
37 \( 1 + (1.05 - 1.82i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-14.0 + 5.09i)T + (1.28e3 - 1.08e3i)T^{2} \)
43 \( 1 + (-57.3 + 10.1i)T + (1.73e3 - 632. i)T^{2} \)
47 \( 1 + (49.8 + 59.3i)T + (-383. + 2.17e3i)T^{2} \)
53 \( 1 + 43.6T + 2.80e3T^{2} \)
59 \( 1 + (-43.0 - 7.58i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (66.2 - 55.5i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (14.0 + 38.6i)T + (-3.43e3 + 2.88e3i)T^{2} \)
71 \( 1 + (74.9 + 43.2i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (42.9 + 74.3i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-7.58 + 20.8i)T + (-4.78e3 - 4.01e3i)T^{2} \)
83 \( 1 + (7.46 - 20.5i)T + (-5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (66.5 + 115. i)T + (-3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (-28.3 - 161. i)T + (-8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.07987175355656895009235439205, −13.33871915076596401238447405588, −11.83377701605397577428847549034, −10.41348141290987720137563874963, −9.363330458531622010645339258459, −8.380909846154745520214603129508, −7.45871806789033478694348964618, −5.69169414672368909175504488805, −4.74752088392915799996947081310, −3.15928375046398102382629307332, 1.17448591201863154963332327928, 2.84663215105836690021769507617, 4.38452332795092080136473002761, 6.12799095753135542072679106674, 7.902861398253655358871118455640, 8.571077224591355805501865510618, 10.00693683340143064332173407449, 11.00905666847239452121186369592, 12.22825706568484247573978621336, 12.87134974990047100389976059739

Graph of the $Z$-function along the critical line