Properties

Label 4-1078e2-1.1-c1e2-0-38
Degree $4$
Conductor $1162084$
Sign $1$
Analytic cond. $74.0954$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 3·4-s − 4·8-s − 6·9-s + 2·11-s + 5·16-s + 12·18-s − 4·22-s − 16·23-s − 2·25-s − 12·29-s − 6·32-s − 18·36-s − 12·37-s − 8·43-s + 6·44-s + 32·46-s + 4·50-s + 12·53-s + 24·58-s + 7·64-s − 8·67-s + 24·72-s + 24·74-s + 27·81-s + 16·86-s − 8·88-s + ⋯
L(s)  = 1  − 1.41·2-s + 3/2·4-s − 1.41·8-s − 2·9-s + 0.603·11-s + 5/4·16-s + 2.82·18-s − 0.852·22-s − 3.33·23-s − 2/5·25-s − 2.22·29-s − 1.06·32-s − 3·36-s − 1.97·37-s − 1.21·43-s + 0.904·44-s + 4.71·46-s + 0.565·50-s + 1.64·53-s + 3.15·58-s + 7/8·64-s − 0.977·67-s + 2.82·72-s + 2.78·74-s + 3·81-s + 1.72·86-s − 0.852·88-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1162084 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(1162084\)    =    \(2^{2} \cdot 7^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(74.0954\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 1162084,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{2} \)
7 \( 1 \)
11$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{2} \)
5$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 + 86 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 158 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
97$C_2^2$ \( 1 + 66 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.530730185409156455610738588161, −9.283237433028884152800309579630, −8.734877997248979398883447111660, −8.583415091695541155962191425043, −8.039633612488981166741343372411, −7.88513291085923387526654283203, −7.30890581613593169430129609524, −6.85101474999731051432473448282, −6.17053049575869876704436871049, −6.09707809914066463630119882667, −5.42267652915547103492609807415, −5.35982384699957127080629626720, −4.18712210120360699910405087214, −3.65576217832408950156496650701, −3.40211026996790954756177269831, −2.46348138242626626833794123960, −2.08526057766359163412999320943, −1.53936938227648347338790331411, 0, 0, 1.53936938227648347338790331411, 2.08526057766359163412999320943, 2.46348138242626626833794123960, 3.40211026996790954756177269831, 3.65576217832408950156496650701, 4.18712210120360699910405087214, 5.35982384699957127080629626720, 5.42267652915547103492609807415, 6.09707809914066463630119882667, 6.17053049575869876704436871049, 6.85101474999731051432473448282, 7.30890581613593169430129609524, 7.88513291085923387526654283203, 8.039633612488981166741343372411, 8.583415091695541155962191425043, 8.734877997248979398883447111660, 9.283237433028884152800309579630, 9.530730185409156455610738588161

Graph of the $Z$-function along the critical line