Properties

Label 2-1075-1.1-c5-0-286
Degree $2$
Conductor $1075$
Sign $-1$
Analytic cond. $172.412$
Root an. cond. $13.1305$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.5·2-s − 27.4·3-s + 78.8·4-s − 289.·6-s + 19.8·7-s + 493.·8-s + 512.·9-s − 85.3·11-s − 2.16e3·12-s + 229.·13-s + 208.·14-s + 2.67e3·16-s − 1.35e3·17-s + 5.40e3·18-s − 2.79e3·19-s − 544.·21-s − 898.·22-s + 1.85e3·23-s − 1.35e4·24-s + 2.41e3·26-s − 7.42e3·27-s + 1.56e3·28-s + 7.31e3·29-s − 2.93e3·31-s + 1.23e4·32-s + 2.34e3·33-s − 1.42e4·34-s + ⋯
L(s)  = 1  + 1.86·2-s − 1.76·3-s + 2.46·4-s − 3.28·6-s + 0.152·7-s + 2.72·8-s + 2.11·9-s − 0.212·11-s − 4.34·12-s + 0.375·13-s + 0.284·14-s + 2.61·16-s − 1.13·17-s + 3.92·18-s − 1.77·19-s − 0.269·21-s − 0.396·22-s + 0.731·23-s − 4.81·24-s + 0.699·26-s − 1.95·27-s + 0.376·28-s + 1.61·29-s − 0.548·31-s + 2.13·32-s + 0.375·33-s − 2.11·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1075 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1075\)    =    \(5^{2} \cdot 43\)
Sign: $-1$
Analytic conductor: \(172.412\)
Root analytic conductor: \(13.1305\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1075,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
43 \( 1 + 1.84e3T \)
good2 \( 1 - 10.5T + 32T^{2} \)
3 \( 1 + 27.4T + 243T^{2} \)
7 \( 1 - 19.8T + 1.68e4T^{2} \)
11 \( 1 + 85.3T + 1.61e5T^{2} \)
13 \( 1 - 229.T + 3.71e5T^{2} \)
17 \( 1 + 1.35e3T + 1.41e6T^{2} \)
19 \( 1 + 2.79e3T + 2.47e6T^{2} \)
23 \( 1 - 1.85e3T + 6.43e6T^{2} \)
29 \( 1 - 7.31e3T + 2.05e7T^{2} \)
31 \( 1 + 2.93e3T + 2.86e7T^{2} \)
37 \( 1 + 2.57e3T + 6.93e7T^{2} \)
41 \( 1 + 3.53e3T + 1.15e8T^{2} \)
47 \( 1 - 7.06e3T + 2.29e8T^{2} \)
53 \( 1 - 3.85e3T + 4.18e8T^{2} \)
59 \( 1 - 2.79e4T + 7.14e8T^{2} \)
61 \( 1 + 3.92e4T + 8.44e8T^{2} \)
67 \( 1 - 1.48e4T + 1.35e9T^{2} \)
71 \( 1 - 8.95e3T + 1.80e9T^{2} \)
73 \( 1 + 3.51e4T + 2.07e9T^{2} \)
79 \( 1 + 1.32e4T + 3.07e9T^{2} \)
83 \( 1 - 9.81e3T + 3.93e9T^{2} \)
89 \( 1 + 8.71e4T + 5.58e9T^{2} \)
97 \( 1 + 8.39e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.592139805184862091704761586583, −7.20072114778840682872872414900, −6.49987200290736736316164761319, −6.14563310999030142574454455980, −5.13135168239033642132879691625, −4.64072308958377492030993030654, −3.91617718171895944926803800189, −2.50924903035240540454200998955, −1.41351531990597001159358198186, 0, 1.41351531990597001159358198186, 2.50924903035240540454200998955, 3.91617718171895944926803800189, 4.64072308958377492030993030654, 5.13135168239033642132879691625, 6.14563310999030142574454455980, 6.49987200290736736316164761319, 7.20072114778840682872872414900, 8.592139805184862091704761586583

Graph of the $Z$-function along the critical line