Properties

Degree $2$
Conductor $1050$
Sign $0.830 - 0.556i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (−0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s + 0.999·6-s + (−1.73 − 2i)7-s + 0.999i·8-s + (0.499 + 0.866i)9-s + (0.5 − 0.866i)11-s + (−0.866 + 0.499i)12-s + 7i·13-s + (2.5 + 0.866i)14-s + (−0.5 − 0.866i)16-s + (−3.46 − 2i)17-s + (−0.866 − 0.499i)18-s + (0.5 + 0.866i)19-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (−0.499 − 0.288i)3-s + (0.249 − 0.433i)4-s + 0.408·6-s + (−0.654 − 0.755i)7-s + 0.353i·8-s + (0.166 + 0.288i)9-s + (0.150 − 0.261i)11-s + (−0.249 + 0.144i)12-s + 1.94i·13-s + (0.668 + 0.231i)14-s + (−0.125 − 0.216i)16-s + (−0.840 − 0.485i)17-s + (−0.204 − 0.117i)18-s + (0.114 + 0.198i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.830 - 0.556i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.830 - 0.556i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $0.830 - 0.556i$
Motivic weight: \(1\)
Character: $\chi_{1050} (949, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :1/2),\ 0.830 - 0.556i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8043462526\)
\(L(\frac12)\) \(\approx\) \(0.8043462526\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 + (0.866 + 0.5i)T \)
5 \( 1 \)
7 \( 1 + (1.73 + 2i)T \)
good11 \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 7iT - 13T^{2} \)
17 \( 1 + (3.46 + 2i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.5 - 0.866i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-0.866 + 0.5i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 8T + 29T^{2} \)
31 \( 1 + (3 - 5.19i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.59 + 1.5i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 - 9T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + (-2.59 + 1.5i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.866 - 0.5i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (-6 + 10.3i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-2 - 3.46i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-10.3 - 6i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + 14T + 71T^{2} \)
73 \( 1 + (-12.1 - 7i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 + (1 + 1.73i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 16iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.867276614186542498237548719917, −9.194091806120880318668688266669, −8.412900211476460856900657658232, −7.11672140714262161287270767643, −6.86515999285472634002441734167, −6.08544207288135951721192789406, −4.82261142983218330957562986479, −3.91675974534516295978698803985, −2.32106329679117397535970729010, −0.923491946537888398229741586062, 0.64353512510729536513562094248, 2.42725576384748579702659078251, 3.32080898977328157369780591679, 4.57221651081651535239326906445, 5.71567551808863462555738920185, 6.33727116123001502217389682669, 7.45978780167350867572025094484, 8.342286050887790270748767352761, 9.141455218266630734638130185681, 9.915401176720130490977155509324

Graph of the $Z$-function along the critical line