Properties

Label 8-1050e4-1.1-c1e4-0-9
Degree $8$
Conductor $1.216\times 10^{12}$
Sign $1$
Analytic cond. $4941.57$
Root an. cond. $2.89556$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 10·4-s + 20·8-s + 35·16-s − 24·23-s + 56·32-s − 96·46-s + 10·49-s − 24·53-s + 84·64-s + 40·79-s − 9·81-s − 240·92-s + 40·98-s − 96·106-s − 48·107-s − 40·109-s − 24·113-s + 44·121-s + 127-s + 120·128-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯
L(s)  = 1  + 2.82·2-s + 5·4-s + 7.07·8-s + 35/4·16-s − 5.00·23-s + 9.89·32-s − 14.1·46-s + 10/7·49-s − 3.29·53-s + 21/2·64-s + 4.50·79-s − 81-s − 25.0·92-s + 4.04·98-s − 9.32·106-s − 4.64·107-s − 3.83·109-s − 2.25·113-s + 4·121-s + 0.0887·127-s + 10.6·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(4941.57\)
Root analytic conductor: \(2.89556\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{4} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(10.83945371\)
\(L(\frac12)\) \(\approx\) \(10.83945371\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{4} \)
3$C_2^2$ \( 1 + p^{2} T^{4} \)
5 \( 1 \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 + 58 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 - p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 + 50 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 10 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 + 170 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.87736987706637292530424011149, −6.59195397511434724454294308115, −6.39826258847772220156967743182, −6.32784738049015520781449809598, −6.19599517255180065643941997606, −6.05666015738576036634297062126, −5.66557650030998166521366179812, −5.34440495652606463811328999954, −5.29220959731045370681849633635, −5.10737014102720669465489711872, −4.83383220856005023640109665178, −4.44914481131758614782842023879, −4.22092591541903285299094398198, −4.00306465912384815511414852842, −3.83986375980348119262798929270, −3.69425169405336512398475280866, −3.61985538414152557382987293428, −2.86739255460033255843117141216, −2.80712017593564731998153868036, −2.54215467349350583926367200452, −2.27452239723119993113642430341, −1.80267881192866430480556060680, −1.65756770968313492172762065628, −1.38788309475886548449170190107, −0.35018346296517068620400736982, 0.35018346296517068620400736982, 1.38788309475886548449170190107, 1.65756770968313492172762065628, 1.80267881192866430480556060680, 2.27452239723119993113642430341, 2.54215467349350583926367200452, 2.80712017593564731998153868036, 2.86739255460033255843117141216, 3.61985538414152557382987293428, 3.69425169405336512398475280866, 3.83986375980348119262798929270, 4.00306465912384815511414852842, 4.22092591541903285299094398198, 4.44914481131758614782842023879, 4.83383220856005023640109665178, 5.10737014102720669465489711872, 5.29220959731045370681849633635, 5.34440495652606463811328999954, 5.66557650030998166521366179812, 6.05666015738576036634297062126, 6.19599517255180065643941997606, 6.32784738049015520781449809598, 6.39826258847772220156967743182, 6.59195397511434724454294308115, 6.87736987706637292530424011149

Graph of the $Z$-function along the critical line