Properties

Degree $2$
Conductor $1050$
Sign $0.266 + 0.963i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + (−1.68 − 0.403i)3-s − 4-s + (0.403 − 1.68i)6-s + (2.31 − 1.28i)7-s i·8-s + (2.67 + 1.35i)9-s − 5.34i·11-s + (1.68 + 0.403i)12-s + 3.95i·13-s + (1.28 + 2.31i)14-s + 16-s − 7.32·17-s + (−1.35 + 2.67i)18-s + 0.807i·19-s + ⋯
L(s)  = 1  + 0.707i·2-s + (−0.972 − 0.232i)3-s − 0.5·4-s + (0.164 − 0.687i)6-s + (0.874 − 0.484i)7-s − 0.353i·8-s + (0.891 + 0.453i)9-s − 1.61i·11-s + (0.486 + 0.116i)12-s + 1.09i·13-s + (0.342 + 0.618i)14-s + 0.250·16-s − 1.77·17-s + (−0.320 + 0.630i)18-s + 0.185i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $0.266 + 0.963i$
Motivic weight: \(1\)
Character: $\chi_{1050} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :1/2),\ 0.266 + 0.963i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7417239113\)
\(L(\frac12)\) \(\approx\) \(0.7417239113\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 + (1.68 + 0.403i)T \)
5 \( 1 \)
7 \( 1 + (-2.31 + 1.28i)T \)
good11 \( 1 + 5.34iT - 11T^{2} \)
13 \( 1 - 3.95iT - 13T^{2} \)
17 \( 1 + 7.32T + 17T^{2} \)
19 \( 1 - 0.807iT - 19T^{2} \)
23 \( 1 + 0.281iT - 23T^{2} \)
29 \( 1 - 0.281iT - 29T^{2} \)
31 \( 1 + 9.07iT - 31T^{2} \)
37 \( 1 + 6.06T + 37T^{2} \)
41 \( 1 - 6.15T + 41T^{2} \)
43 \( 1 + 6.34T + 43T^{2} \)
47 \( 1 - 5.78T + 47T^{2} \)
53 \( 1 + 10.9iT - 53T^{2} \)
59 \( 1 + 4.90T + 59T^{2} \)
61 \( 1 + 13.2iT - 61T^{2} \)
67 \( 1 - 6.71T + 67T^{2} \)
71 \( 1 - 3.36iT - 71T^{2} \)
73 \( 1 + 4.98iT - 73T^{2} \)
79 \( 1 + 3.26T + 79T^{2} \)
83 \( 1 - 1.53T + 83T^{2} \)
89 \( 1 + 4.31T + 89T^{2} \)
97 \( 1 + 15.0iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.671894435268187738967383239534, −8.700394609288546496379879681296, −8.028558278105816153222770667617, −7.00370711063345383644643081292, −6.41541906469133678097625197343, −5.57564881067034433278106847695, −4.63660605575406557730646503944, −3.91839582693243237842225361830, −1.90954318145687953362884605880, −0.39499080563206526711884062032, 1.44776973456407214720524802427, 2.54672611404739278976427713901, 4.15654562405085103642295692110, 4.82078151428542026209226588905, 5.47612434112835703678030865617, 6.70323069327001015976243805669, 7.52730471645794310846268520775, 8.684436566356740218781257052756, 9.397663022245670245098884718363, 10.48860281971261469004604057839

Graph of the $Z$-function along the critical line