Properties

Degree $2$
Conductor $1050$
Sign $-0.487 - 0.872i$
Motivic weight $1$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s + (−0.618 − 1.61i)3-s − 4-s + (−1.61 + 0.618i)6-s + (−0.381 − 2.61i)7-s + i·8-s + (−2.23 + 2.00i)9-s − 4.47i·11-s + (0.618 + 1.61i)12-s − 3.23i·13-s + (−2.61 + 0.381i)14-s + 16-s − 0.763·17-s + (2.00 + 2.23i)18-s − 0.472i·19-s + ⋯
L(s)  = 1  − 0.707i·2-s + (−0.356 − 0.934i)3-s − 0.5·4-s + (−0.660 + 0.252i)6-s + (−0.144 − 0.989i)7-s + 0.353i·8-s + (−0.745 + 0.666i)9-s − 1.34i·11-s + (0.178 + 0.467i)12-s − 0.897i·13-s + (−0.699 + 0.102i)14-s + 0.250·16-s − 0.185·17-s + (0.471 + 0.527i)18-s − 0.108i·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.487 - 0.872i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.487 - 0.872i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1050\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-0.487 - 0.872i$
Motivic weight: \(1\)
Character: $\chi_{1050} (251, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1050,\ (\ :1/2),\ -0.487 - 0.872i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7328633073\)
\(L(\frac12)\) \(\approx\) \(0.7328633073\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 + (0.618 + 1.61i)T \)
5 \( 1 \)
7 \( 1 + (0.381 + 2.61i)T \)
good11 \( 1 + 4.47iT - 11T^{2} \)
13 \( 1 + 3.23iT - 13T^{2} \)
17 \( 1 + 0.763T + 17T^{2} \)
19 \( 1 + 0.472iT - 19T^{2} \)
23 \( 1 - 4iT - 23T^{2} \)
29 \( 1 - 5.70iT - 29T^{2} \)
31 \( 1 + 7.23iT - 31T^{2} \)
37 \( 1 + 5.23T + 37T^{2} \)
41 \( 1 - 6.47T + 41T^{2} \)
43 \( 1 + 12.9T + 43T^{2} \)
47 \( 1 + 2.47T + 47T^{2} \)
53 \( 1 - 8.47iT - 53T^{2} \)
59 \( 1 + 4.47T + 59T^{2} \)
61 \( 1 - 2.76iT - 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 + 2.76iT - 71T^{2} \)
73 \( 1 - 6.76iT - 73T^{2} \)
79 \( 1 - 8.94T + 79T^{2} \)
83 \( 1 - 16.6T + 83T^{2} \)
89 \( 1 + 14.4T + 89T^{2} \)
97 \( 1 + 5.23iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.455985958683693746162590004894, −8.393593610158102822196489113398, −7.80061495498175340239336679850, −6.86115400907298562547086373970, −5.89935941887595890932446585988, −5.09411750310184589743828675343, −3.70614113597681864478282335179, −2.89100182024569108966458522074, −1.40699466418107158754766916260, −0.35789036118455111709010326276, 2.16756668792110497854861664515, 3.60181022102132425019819931696, 4.69416515476614367899637449225, 5.13928255959841595481325715070, 6.33133131518256237060506486834, 6.80948714588872995750633334259, 8.145196080897553356214580767023, 8.897128894602978971930438835404, 9.593274806164379549035724775503, 10.14870212424882889376197975683

Graph of the $Z$-function along the critical line