Properties

Label 2-105-35.4-c3-0-13
Degree $2$
Conductor $105$
Sign $0.937 - 0.346i$
Analytic cond. $6.19520$
Root an. cond. $2.48901$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.89 − 1.67i)2-s + (2.59 + 1.5i)3-s + (1.58 − 2.73i)4-s + (0.879 + 11.1i)5-s + 10.0·6-s + (6.15 + 17.4i)7-s + 16.1i·8-s + (4.5 + 7.79i)9-s + (21.1 + 30.7i)10-s + (17.8 − 30.8i)11-s + (8.21 − 4.74i)12-s − 88.7i·13-s + (46.9 + 40.2i)14-s + (−14.4 + 30.2i)15-s + (39.6 + 68.6i)16-s + (−84.5 − 48.8i)17-s + ⋯
L(s)  = 1  + (1.02 − 0.590i)2-s + (0.499 + 0.288i)3-s + (0.197 − 0.342i)4-s + (0.0786 + 0.996i)5-s + 0.681·6-s + (0.332 + 0.943i)7-s + 0.714i·8-s + (0.166 + 0.288i)9-s + (0.669 + 0.973i)10-s + (0.488 − 0.845i)11-s + (0.197 − 0.114i)12-s − 1.89i·13-s + (0.897 + 0.768i)14-s + (−0.248 + 0.521i)15-s + (0.619 + 1.07i)16-s + (−1.20 − 0.696i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.937 - 0.346i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.937 - 0.346i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $0.937 - 0.346i$
Analytic conductor: \(6.19520\)
Root analytic conductor: \(2.48901\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{105} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 105,\ (\ :3/2),\ 0.937 - 0.346i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.98259 + 0.533903i\)
\(L(\frac12)\) \(\approx\) \(2.98259 + 0.533903i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.59 - 1.5i)T \)
5 \( 1 + (-0.879 - 11.1i)T \)
7 \( 1 + (-6.15 - 17.4i)T \)
good2 \( 1 + (-2.89 + 1.67i)T + (4 - 6.92i)T^{2} \)
11 \( 1 + (-17.8 + 30.8i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 + 88.7iT - 2.19e3T^{2} \)
17 \( 1 + (84.5 + 48.8i)T + (2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (-11.6 - 20.0i)T + (-3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-92.0 + 53.1i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 166.T + 2.43e4T^{2} \)
31 \( 1 + (20.1 - 34.8i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (42.1 - 24.3i)T + (2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 - 336.T + 6.89e4T^{2} \)
43 \( 1 + 268. iT - 7.95e4T^{2} \)
47 \( 1 + (363. - 209. i)T + (5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (-51.3 - 29.6i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (184. - 319. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (465. + 806. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (257. + 148. i)T + (1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 - 715.T + 3.57e5T^{2} \)
73 \( 1 + (709. + 409. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (108. + 188. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 194. iT - 5.71e5T^{2} \)
89 \( 1 + (-299. - 517. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 1.49e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.42648167068808433801802832223, −12.39336131726902005403543080413, −11.26377284729246846226916180586, −10.59122469020253977693984654672, −8.980374701366953843640852168195, −7.946816926747869555667421095134, −6.14511525276557164111009061703, −4.94255318680373751318630046343, −3.28944663991435101811328267086, −2.59076783760239737956575515689, 1.49971922709741780874437850299, 4.17744488012442661895964265739, 4.62517353746957508901141769544, 6.46387723440785303031285032807, 7.28451979562296302415908728302, 8.831959838240491568636709875376, 9.734922628951627501466514314950, 11.48038304960784778539948505436, 12.65073418130863626390634908715, 13.43165874959645049013787696924

Graph of the $Z$-function along the critical line