Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.146 - 0.989i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (3.31 + 1.91i)2-s + (−2.97 + 0.410i)3-s + (5.34 + 9.24i)4-s + (1.93 + 1.11i)5-s + (−10.6 − 4.32i)6-s + (−5.86 − 3.82i)7-s + 25.5i·8-s + (8.66 − 2.44i)9-s + (4.28 + 7.41i)10-s + (9.48 − 5.47i)11-s + (−19.6 − 25.2i)12-s − 3.75·13-s + (−12.1 − 23.9i)14-s + (−6.21 − 2.52i)15-s + (−27.6 + 47.9i)16-s + (12.6 − 7.30i)17-s + ⋯
L(s)  = 1  + (1.65 + 0.957i)2-s + (−0.990 + 0.136i)3-s + (1.33 + 2.31i)4-s + (0.387 + 0.223i)5-s + (−1.77 − 0.721i)6-s + (−0.837 − 0.546i)7-s + 3.19i·8-s + (0.962 − 0.271i)9-s + (0.428 + 0.741i)10-s + (0.862 − 0.497i)11-s + (−1.63 − 2.10i)12-s − 0.288·13-s + (−0.866 − 1.70i)14-s + (−0.414 − 0.168i)15-s + (−1.72 + 2.99i)16-s + (0.744 − 0.429i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.146 - 0.989i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.146 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.146 - 0.989i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (86, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.146 - 0.989i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(1.60892 + 1.86406i\)
\(L(\frac12)\)  \(\approx\)  \(1.60892 + 1.86406i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (2.97 - 0.410i)T \)
5 \( 1 + (-1.93 - 1.11i)T \)
7 \( 1 + (5.86 + 3.82i)T \)
good2 \( 1 + (-3.31 - 1.91i)T + (2 + 3.46i)T^{2} \)
11 \( 1 + (-9.48 + 5.47i)T + (60.5 - 104. i)T^{2} \)
13 \( 1 + 3.75T + 169T^{2} \)
17 \( 1 + (-12.6 + 7.30i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (-5.54 + 9.60i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (8.53 + 4.92i)T + (264.5 + 458. i)T^{2} \)
29 \( 1 + 10.0iT - 841T^{2} \)
31 \( 1 + (12.0 + 20.9i)T + (-480.5 + 832. i)T^{2} \)
37 \( 1 + (-19.1 + 33.2i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 - 67.5iT - 1.68e3T^{2} \)
43 \( 1 + 77.4T + 1.84e3T^{2} \)
47 \( 1 + (-4.91 - 2.83i)T + (1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (59.9 - 34.6i)T + (1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (45.4 - 26.2i)T + (1.74e3 - 3.01e3i)T^{2} \)
61 \( 1 + (-6.77 + 11.7i)T + (-1.86e3 - 3.22e3i)T^{2} \)
67 \( 1 + (10.6 + 18.4i)T + (-2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + 25.6iT - 5.04e3T^{2} \)
73 \( 1 + (-12.4 - 21.4i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-55.3 + 95.8i)T + (-3.12e3 - 5.40e3i)T^{2} \)
83 \( 1 - 102. iT - 6.88e3T^{2} \)
89 \( 1 + (62.5 + 36.1i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + 6.23T + 9.40e3T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.77486450375901102216175516091, −12.97877548927734542720564387997, −12.02966621060414206098429042589, −11.15145981609454306290666051815, −9.645327921880958375632861550125, −7.53920053296433802117123766872, −6.54631591480045566635913830449, −5.89223389842212138929214328294, −4.59925269172672382020128023149, −3.35502898680722201726809973274, 1.67662789714391363915844090031, 3.57965581007219360042785706593, 5.00511946124070689269498101461, 5.93122322551699085363949568665, 6.80476042053557953431746752241, 9.649079968571203109522603902073, 10.33513112979520056872778865658, 11.66298957145646617711321832880, 12.29704763679622729992779399407, 12.86183740505578524946593421514

Graph of the $Z$-function along the critical line