Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.953 + 0.300i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.85 + 3.22i)2-s + (−2.70 − 1.29i)3-s + (−4.91 + 8.51i)4-s + (−4.36 − 2.43i)5-s + (−0.869 − 11.1i)6-s + (−4.87 + 5.02i)7-s − 21.7·8-s + (5.65 + 7.00i)9-s + (−0.272 − 18.5i)10-s + (10.0 + 5.82i)11-s + (24.3 − 16.7i)12-s + 9.22i·13-s + (−25.2 − 6.37i)14-s + (8.66 + 12.2i)15-s + (−20.7 − 35.8i)16-s + (1.56 − 2.70i)17-s + ⋯
L(s)  = 1  + (0.929 + 1.61i)2-s + (−0.902 − 0.431i)3-s + (−1.22 + 2.12i)4-s + (−0.873 − 0.487i)5-s + (−0.144 − 1.85i)6-s + (−0.696 + 0.717i)7-s − 2.71·8-s + (0.628 + 0.777i)9-s + (−0.0272 − 1.85i)10-s + (0.916 + 0.529i)11-s + (2.02 − 1.39i)12-s + 0.709i·13-s + (−1.80 − 0.455i)14-s + (0.577 + 0.816i)15-s + (−1.29 − 2.24i)16-s + (0.0919 − 0.159i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.953 + 0.300i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (74, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.953 + 0.300i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.148702 - 0.965312i\)
\(L(\frac12)\)  \(\approx\)  \(0.148702 - 0.965312i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (2.70 + 1.29i)T \)
5 \( 1 + (4.36 + 2.43i)T \)
7 \( 1 + (4.87 - 5.02i)T \)
good2 \( 1 + (-1.85 - 3.22i)T + (-2 + 3.46i)T^{2} \)
11 \( 1 + (-10.0 - 5.82i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 - 9.22iT - 169T^{2} \)
17 \( 1 + (-1.56 + 2.70i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (-5.39 - 9.34i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (2.93 + 5.08i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 + 38.3iT - 841T^{2} \)
31 \( 1 + (15.7 - 27.2i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (20.0 - 11.5i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 - 22.7iT - 1.68e3T^{2} \)
43 \( 1 - 29.1iT - 1.84e3T^{2} \)
47 \( 1 + (-30.0 - 52.1i)T + (-1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (-27.9 + 48.4i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (-23.2 - 13.4i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (19.8 + 34.3i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-86.4 - 49.9i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 + 62.5iT - 5.04e3T^{2} \)
73 \( 1 + (-37.5 - 21.6i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-15.5 - 26.8i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 - 93.5T + 6.88e3T^{2} \)
89 \( 1 + (34.2 - 19.8i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 119. iT - 9.40e3T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.21298579207547998031041588059, −13.02218777988649115660262994584, −12.26040698732709398950413299147, −11.70302602465683668901876685458, −9.384273760510351464414524736777, −8.138088184606921939551383007964, −7.02469518141656898301112494998, −6.24249054057629969230936734746, −5.05345128363409968311684225350, −3.95138980950879041366906497634, 0.62788813843130635130953740108, 3.39662783558458804280174924995, 4.04529476647648938905170817977, 5.51977209093637827140673443843, 6.89028809415216311446988549476, 9.245766564844852759354007588420, 10.43160234305585390386038920885, 10.92493469577396481952361169439, 11.85903492734455754762680212922, 12.57881647288034857843360884194

Graph of the $Z$-function along the critical line