Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.155 - 0.987i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.60 + 2.77i)2-s + (2.69 − 1.32i)3-s + (−3.15 + 5.45i)4-s + (−1.12 + 4.87i)5-s + (7.99 + 5.35i)6-s + (−6.02 − 3.55i)7-s − 7.38·8-s + (5.49 − 7.12i)9-s + (−15.3 + 4.68i)10-s + (10.5 + 6.09i)11-s + (−1.26 + 18.8i)12-s − 8.47i·13-s + (0.220 − 22.4i)14-s + (3.41 + 14.6i)15-s + (0.744 + 1.29i)16-s + (5.29 − 9.17i)17-s + ⋯
L(s)  = 1  + (0.802 + 1.38i)2-s + (0.897 − 0.441i)3-s + (−0.787 + 1.36i)4-s + (−0.225 + 0.974i)5-s + (1.33 + 0.893i)6-s + (−0.861 − 0.508i)7-s − 0.923·8-s + (0.610 − 0.791i)9-s + (−1.53 + 0.468i)10-s + (0.959 + 0.553i)11-s + (−0.105 + 1.57i)12-s − 0.651i·13-s + (0.0157 − 1.60i)14-s + (0.227 + 0.973i)15-s + (0.0465 + 0.0806i)16-s + (0.311 − 0.539i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.155 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.155 - 0.987i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (74, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.155 - 0.987i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(1.51240 + 1.76947i\)
\(L(\frac12)\)  \(\approx\)  \(1.51240 + 1.76947i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (-2.69 + 1.32i)T \)
5 \( 1 + (1.12 - 4.87i)T \)
7 \( 1 + (6.02 + 3.55i)T \)
good2 \( 1 + (-1.60 - 2.77i)T + (-2 + 3.46i)T^{2} \)
11 \( 1 + (-10.5 - 6.09i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + 8.47iT - 169T^{2} \)
17 \( 1 + (-5.29 + 9.17i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (10.0 + 17.4i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (15.2 + 26.4i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 - 42.8iT - 841T^{2} \)
31 \( 1 + (6.11 - 10.5i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (-28.8 + 16.6i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 - 6.40iT - 1.68e3T^{2} \)
43 \( 1 - 20.0iT - 1.84e3T^{2} \)
47 \( 1 + (11.8 + 20.5i)T + (-1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (43.9 - 76.1i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (41.9 + 24.2i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-10.4 - 18.1i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (-19.6 - 11.3i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 2.44iT - 5.04e3T^{2} \)
73 \( 1 + (76.5 + 44.2i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (3.20 + 5.54i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 - 103.T + 6.88e3T^{2} \)
89 \( 1 + (54.2 - 31.3i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + 140. iT - 9.40e3T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.19506355262637465755169656514, −13.15255766005064335396804063738, −12.33793950788573685129383164192, −10.48896788987295027972307888421, −9.153733319899430170400917587175, −7.77021904541731303689101043215, −6.93368633040290971535404916993, −6.35780912258337732529384988358, −4.27712796744766812496810827490, −3.10272037047269947578675452783, 1.82184123915247958516593818632, 3.53112833372087398985485864672, 4.24340037359451617545968779216, 5.85486845682718300995522972581, 8.138994497352677348193075026991, 9.346344507627569772073339512771, 9.902345035642492596455600917748, 11.44052860204188624996713875507, 12.25677510021686081182501207476, 13.16047498677439530283389884598

Graph of the $Z$-function along the critical line