Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.0585 - 0.998i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.897 + 1.55i)2-s + (2.08 + 2.15i)3-s + (0.387 − 0.671i)4-s + (−4.89 + 0.996i)5-s + (−1.48 + 5.17i)6-s + (1.39 + 6.85i)7-s + 8.57·8-s + (−0.316 + 8.99i)9-s + (−5.94 − 6.72i)10-s + (1.00 + 0.581i)11-s + (2.25 − 0.562i)12-s − 12.4i·13-s + (−9.41 + 8.32i)14-s + (−12.3 − 8.49i)15-s + (6.14 + 10.6i)16-s + (9.31 − 16.1i)17-s + ⋯
L(s)  = 1  + (0.448 + 0.777i)2-s + (0.694 + 0.719i)3-s + (0.0969 − 0.167i)4-s + (−0.979 + 0.199i)5-s + (−0.247 + 0.862i)6-s + (0.199 + 0.979i)7-s + 1.07·8-s + (−0.0351 + 0.999i)9-s + (−0.594 − 0.672i)10-s + (0.0916 + 0.0528i)11-s + (0.188 − 0.0468i)12-s − 0.959i·13-s + (−0.672 + 0.594i)14-s + (−0.824 − 0.566i)15-s + (0.384 + 0.665i)16-s + (0.547 − 0.949i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0585 - 0.998i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0585 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.0585 - 0.998i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (74, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.0585 - 0.998i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(1.34797 + 1.42942i\)
\(L(\frac12)\)  \(\approx\)  \(1.34797 + 1.42942i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (-2.08 - 2.15i)T \)
5 \( 1 + (4.89 - 0.996i)T \)
7 \( 1 + (-1.39 - 6.85i)T \)
good2 \( 1 + (-0.897 - 1.55i)T + (-2 + 3.46i)T^{2} \)
11 \( 1 + (-1.00 - 0.581i)T + (60.5 + 104. i)T^{2} \)
13 \( 1 + 12.4iT - 169T^{2} \)
17 \( 1 + (-9.31 + 16.1i)T + (-144.5 - 250. i)T^{2} \)
19 \( 1 + (15.2 + 26.3i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (-13.7 - 23.7i)T + (-264.5 + 458. i)T^{2} \)
29 \( 1 + 52.6iT - 841T^{2} \)
31 \( 1 + (17.2 - 29.9i)T + (-480.5 - 832. i)T^{2} \)
37 \( 1 + (0.357 - 0.206i)T + (684.5 - 1.18e3i)T^{2} \)
41 \( 1 + 17.2iT - 1.68e3T^{2} \)
43 \( 1 - 7.86iT - 1.84e3T^{2} \)
47 \( 1 + (-17.4 - 30.1i)T + (-1.10e3 + 1.91e3i)T^{2} \)
53 \( 1 + (17.8 - 30.9i)T + (-1.40e3 - 2.43e3i)T^{2} \)
59 \( 1 + (32.3 + 18.6i)T + (1.74e3 + 3.01e3i)T^{2} \)
61 \( 1 + (-25.4 - 44.0i)T + (-1.86e3 + 3.22e3i)T^{2} \)
67 \( 1 + (24.9 + 14.4i)T + (2.24e3 + 3.88e3i)T^{2} \)
71 \( 1 - 66.8iT - 5.04e3T^{2} \)
73 \( 1 + (46.7 + 27.0i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (16.6 + 28.8i)T + (-3.12e3 + 5.40e3i)T^{2} \)
83 \( 1 + 72.0T + 6.88e3T^{2} \)
89 \( 1 + (41.4 - 23.9i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 - 66.7iT - 9.40e3T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.18473174438198004403180721414, −13.05929284955312168682698132283, −11.57920869720018319270243457093, −10.67316394590233893100254518618, −9.316462674768534278822533342223, −8.139099093344100683597314126594, −7.22002765270707820872329999452, −5.53762427623963489106785086179, −4.52701342831929410060896003494, −2.86247769253518071093123935730, 1.57613036325070355046080731687, 3.48426548347892354142131728728, 4.25947161184069613824690285553, 6.79938857547869055919093499158, 7.73480812629887720393928482427, 8.610413578531985978646632280784, 10.40329042998787848299641716638, 11.38511740061884418190504913587, 12.44822238105462422377831646284, 12.89734021987186656576183918840

Graph of the $Z$-function along the critical line