Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $0.993 + 0.111i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.67 + 1.67i)2-s + (2.55 − 1.56i)3-s − 1.58i·4-s + (−0.529 − 4.97i)5-s + (−1.66 + 6.89i)6-s + (6.78 − 1.73i)7-s + (−4.03 − 4.03i)8-s + (4.10 − 8.01i)9-s + (9.19 + 7.42i)10-s − 4.41i·11-s + (−2.48 − 4.06i)12-s + (1.62 + 1.62i)13-s + (−8.43 + 14.2i)14-s + (−9.13 − 11.8i)15-s + 19.8·16-s + (13.9 + 13.9i)17-s + ⋯
L(s)  = 1  + (−0.835 + 0.835i)2-s + (0.853 − 0.521i)3-s − 0.397i·4-s + (−0.105 − 0.994i)5-s + (−0.277 + 1.14i)6-s + (0.968 − 0.247i)7-s + (−0.503 − 0.503i)8-s + (0.455 − 0.890i)9-s + (0.919 + 0.742i)10-s − 0.401i·11-s + (−0.207 − 0.338i)12-s + (0.124 + 0.124i)13-s + (−0.602 + 1.01i)14-s + (−0.609 − 0.793i)15-s + 1.23·16-s + (0.819 + 0.819i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 + 0.111i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.993 + 0.111i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.993 + 0.111i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (62, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ 0.993 + 0.111i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(1.19838 - 0.0670374i\)
\(L(\frac12)\)  \(\approx\)  \(1.19838 - 0.0670374i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (-2.55 + 1.56i)T \)
5 \( 1 + (0.529 + 4.97i)T \)
7 \( 1 + (-6.78 + 1.73i)T \)
good2 \( 1 + (1.67 - 1.67i)T - 4iT^{2} \)
11 \( 1 + 4.41iT - 121T^{2} \)
13 \( 1 + (-1.62 - 1.62i)T + 169iT^{2} \)
17 \( 1 + (-13.9 - 13.9i)T + 289iT^{2} \)
19 \( 1 + 0.694T + 361T^{2} \)
23 \( 1 + (-23.1 - 23.1i)T + 529iT^{2} \)
29 \( 1 + 49.1T + 841T^{2} \)
31 \( 1 + 33.8iT - 961T^{2} \)
37 \( 1 + (-2.02 - 2.02i)T + 1.36e3iT^{2} \)
41 \( 1 + 32.5T + 1.68e3T^{2} \)
43 \( 1 + (30.4 - 30.4i)T - 1.84e3iT^{2} \)
47 \( 1 + (-18.7 - 18.7i)T + 2.20e3iT^{2} \)
53 \( 1 + (-33.8 - 33.8i)T + 2.80e3iT^{2} \)
59 \( 1 - 23.1iT - 3.48e3T^{2} \)
61 \( 1 - 12.9iT - 3.72e3T^{2} \)
67 \( 1 + (56.3 + 56.3i)T + 4.48e3iT^{2} \)
71 \( 1 - 92.7iT - 5.04e3T^{2} \)
73 \( 1 + (-95.4 - 95.4i)T + 5.32e3iT^{2} \)
79 \( 1 - 100. iT - 6.24e3T^{2} \)
83 \( 1 + (5.62 - 5.62i)T - 6.88e3iT^{2} \)
89 \( 1 + 158. iT - 7.92e3T^{2} \)
97 \( 1 + (37.1 - 37.1i)T - 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.52260243654036982978360035886, −12.67903690134871575157292181981, −11.49267494848932948448548708571, −9.691427625491853899718195968763, −8.784509847600853825377851488446, −8.039811405883521225685586396255, −7.33925497631310564993669323187, −5.70181434744947773107074882990, −3.80004238183120353878832100283, −1.28441409378062444644494788939, 2.03451511104998771911319784382, 3.28018073878603964144738963872, 5.16829208547516700250827565740, 7.29058226658591029604868413036, 8.382236658189556849253852072775, 9.375472595004189910510440930486, 10.39527508841324698387080266171, 11.02755002729796228911862702954, 12.09348712048292026840380435044, 13.77262140663627879987305600620

Graph of the $Z$-function along the critical line