Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $0.338 - 0.940i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.88 + 1.88i)2-s + (−2.65 − 1.39i)3-s − 3.12i·4-s + (4.96 + 0.551i)5-s + (7.64 − 2.36i)6-s + (2.09 − 6.68i)7-s + (−1.65 − 1.65i)8-s + (5.08 + 7.42i)9-s + (−10.4 + 8.33i)10-s + 17.9i·11-s + (−4.36 + 8.28i)12-s + (11.1 + 11.1i)13-s + (8.66 + 16.5i)14-s + (−12.4 − 8.41i)15-s + 18.7·16-s + (−0.666 − 0.666i)17-s + ⋯
L(s)  = 1  + (−0.943 + 0.943i)2-s + (−0.884 − 0.466i)3-s − 0.780i·4-s + (0.993 + 0.110i)5-s + (1.27 − 0.394i)6-s + (0.298 − 0.954i)7-s + (−0.207 − 0.207i)8-s + (0.564 + 0.825i)9-s + (−1.04 + 0.833i)10-s + 1.62i·11-s + (−0.363 + 0.690i)12-s + (0.856 + 0.856i)13-s + (0.618 + 1.18i)14-s + (−0.827 − 0.561i)15-s + 1.17·16-s + (−0.0392 − 0.0392i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.338 - 0.940i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.338 - 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.338 - 0.940i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (62, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ 0.338 - 0.940i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.624261 + 0.438809i\)
\(L(\frac12)\)  \(\approx\)  \(0.624261 + 0.438809i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (2.65 + 1.39i)T \)
5 \( 1 + (-4.96 - 0.551i)T \)
7 \( 1 + (-2.09 + 6.68i)T \)
good2 \( 1 + (1.88 - 1.88i)T - 4iT^{2} \)
11 \( 1 - 17.9iT - 121T^{2} \)
13 \( 1 + (-11.1 - 11.1i)T + 169iT^{2} \)
17 \( 1 + (0.666 + 0.666i)T + 289iT^{2} \)
19 \( 1 - 10.8T + 361T^{2} \)
23 \( 1 + (-2.20 - 2.20i)T + 529iT^{2} \)
29 \( 1 - 22.9T + 841T^{2} \)
31 \( 1 + 26.1iT - 961T^{2} \)
37 \( 1 + (-41.6 - 41.6i)T + 1.36e3iT^{2} \)
41 \( 1 - 6.85T + 1.68e3T^{2} \)
43 \( 1 + (37.6 - 37.6i)T - 1.84e3iT^{2} \)
47 \( 1 + (-5.55 - 5.55i)T + 2.20e3iT^{2} \)
53 \( 1 + (32.4 + 32.4i)T + 2.80e3iT^{2} \)
59 \( 1 + 99.8iT - 3.48e3T^{2} \)
61 \( 1 - 44.6iT - 3.72e3T^{2} \)
67 \( 1 + (18.0 + 18.0i)T + 4.48e3iT^{2} \)
71 \( 1 + 6.35iT - 5.04e3T^{2} \)
73 \( 1 + (55.3 + 55.3i)T + 5.32e3iT^{2} \)
79 \( 1 + 59.7iT - 6.24e3T^{2} \)
83 \( 1 + (42.2 - 42.2i)T - 6.88e3iT^{2} \)
89 \( 1 - 58.4iT - 7.92e3T^{2} \)
97 \( 1 + (11.1 - 11.1i)T - 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−13.72725080487804235769402282870, −12.80557008008652069630423653222, −11.46923496350068406221271930582, −10.18673175979384183916953131901, −9.537855213709129800914199048143, −7.923064735339431079222233681567, −6.93457674666200202602755615306, −6.28529964783701949352716738106, −4.70784869879552249997403515865, −1.42634916627372273614260621228, 1.05239878435453956070183159159, 3.01933909615240945527606931228, 5.47224879849863647328698754379, 6.02674631261738232519205059910, 8.479594320619737664948198692038, 9.164076211318021226514080767820, 10.32170712886967032307673813426, 10.98521811138716901436969075656, 11.84274163158206044847465246109, 12.94852398519582045016239765734

Graph of the $Z$-function along the critical line