Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.472 - 0.881i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (0.152 + 2.99i)3-s + 3i·4-s + (4.24 − 2.63i)5-s + (−2.22 − 2.01i)6-s + (5.49 + 4.33i)7-s + (−4.94 − 4.94i)8-s + (−8.95 + 0.915i)9-s + (−1.13 + 4.86i)10-s + 13.9i·11-s + (−8.98 + 0.458i)12-s + (−14.6 − 14.6i)13-s + (−6.95 + 0.822i)14-s + (8.55 + 12.3i)15-s − 4.99·16-s + (4.86 + 4.86i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.353i)2-s + (0.0509 + 0.998i)3-s + 0.750i·4-s + (0.849 − 0.527i)5-s + (−0.371 − 0.335i)6-s + (0.785 + 0.619i)7-s + (−0.618 − 0.618i)8-s + (−0.994 + 0.101i)9-s + (−0.113 + 0.486i)10-s + 1.26i·11-s + (−0.749 + 0.0381i)12-s + (−1.12 − 1.12i)13-s + (−0.496 + 0.0587i)14-s + (0.570 + 0.821i)15-s − 0.312·16-s + (0.286 + 0.286i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.472 - 0.881i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.472 - 0.881i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.472 - 0.881i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (62, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.472 - 0.881i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.644826 + 1.07791i\)
\(L(\frac12)\)  \(\approx\)  \(0.644826 + 1.07791i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (-0.152 - 2.99i)T \)
5 \( 1 + (-4.24 + 2.63i)T \)
7 \( 1 + (-5.49 - 4.33i)T \)
good2 \( 1 + (0.707 - 0.707i)T - 4iT^{2} \)
11 \( 1 - 13.9iT - 121T^{2} \)
13 \( 1 + (14.6 + 14.6i)T + 169iT^{2} \)
17 \( 1 + (-4.86 - 4.86i)T + 289iT^{2} \)
19 \( 1 - 21.7T + 361T^{2} \)
23 \( 1 + (1.77 + 1.77i)T + 529iT^{2} \)
29 \( 1 - 28.0T + 841T^{2} \)
31 \( 1 - 17.2iT - 961T^{2} \)
37 \( 1 + (6.50 + 6.50i)T + 1.36e3iT^{2} \)
41 \( 1 - 26.7T + 1.68e3T^{2} \)
43 \( 1 + (-33.1 + 33.1i)T - 1.84e3iT^{2} \)
47 \( 1 + (18.5 + 18.5i)T + 2.20e3iT^{2} \)
53 \( 1 + (-48.3 - 48.3i)T + 2.80e3iT^{2} \)
59 \( 1 + 29.6iT - 3.48e3T^{2} \)
61 \( 1 - 21.0iT - 3.72e3T^{2} \)
67 \( 1 + (32.4 + 32.4i)T + 4.48e3iT^{2} \)
71 \( 1 - 16.0iT - 5.04e3T^{2} \)
73 \( 1 + (57.3 + 57.3i)T + 5.32e3iT^{2} \)
79 \( 1 - 75.8iT - 6.24e3T^{2} \)
83 \( 1 + (51.9 - 51.9i)T - 6.88e3iT^{2} \)
89 \( 1 + 174. iT - 7.92e3T^{2} \)
97 \( 1 + (-16.6 + 16.6i)T - 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.10035580630274923143713367874, −12.57612723125841454492027276732, −11.98915997230301527153324339470, −10.29293726363353423905012399118, −9.508095328835550954998955968221, −8.554268690623580754676483795496, −7.48242277802496376319882627563, −5.57876595903916386357063875258, −4.63224791805108320855359529274, −2.67731720795549335619910659243, 1.17106605569589094207425958155, 2.58376431035778760152476442709, 5.26837661533239155176633331507, 6.38646073279706718420973404186, 7.53439812967952548571469520096, 8.957046846527318741490771596506, 10.01112330837168180477018210587, 11.18636039211601922376428521249, 11.78288616036323567135280925098, 13.53119956858840503685259107647

Graph of the $Z$-function along the critical line