Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $-0.169 + 0.985i$
Motivic weight 2
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s + (−2.87 + 0.854i)3-s + 3i·4-s + (−4.57 − 2.01i)5-s + (1.42 − 2.63i)6-s + (3.94 − 5.77i)7-s + (−4.94 − 4.94i)8-s + (7.53 − 4.91i)9-s + (4.65 − 1.81i)10-s − 2.58i·11-s + (−2.56 − 8.62i)12-s + (−8.94 − 8.94i)13-s + (1.29 + 6.87i)14-s + (14.8 + 1.86i)15-s − 4.99·16-s + (0.581 + 0.581i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.353i)2-s + (−0.958 + 0.284i)3-s + 0.750i·4-s + (−0.915 − 0.402i)5-s + (0.238 − 0.439i)6-s + (0.564 − 0.825i)7-s + (−0.618 − 0.618i)8-s + (0.837 − 0.546i)9-s + (0.465 − 0.181i)10-s − 0.235i·11-s + (−0.213 − 0.718i)12-s + (−0.687 − 0.687i)13-s + (0.0924 + 0.491i)14-s + (0.992 + 0.124i)15-s − 0.312·16-s + (0.0342 + 0.0342i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.169 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.169 + 0.985i$
motivic weight  =  \(2\)
character  :  $\chi_{105} (62, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 105,\ (\ :1),\ -0.169 + 0.985i)\)
\(L(\frac{3}{2})\)  \(\approx\)  \(0.171684 - 0.203816i\)
\(L(\frac12)\)  \(\approx\)  \(0.171684 - 0.203816i\)
\(L(2)\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (2.87 - 0.854i)T \)
5 \( 1 + (4.57 + 2.01i)T \)
7 \( 1 + (-3.94 + 5.77i)T \)
good2 \( 1 + (0.707 - 0.707i)T - 4iT^{2} \)
11 \( 1 + 2.58iT - 121T^{2} \)
13 \( 1 + (8.94 + 8.94i)T + 169iT^{2} \)
17 \( 1 + (-0.581 - 0.581i)T + 289iT^{2} \)
19 \( 1 + 16.5T + 361T^{2} \)
23 \( 1 + (26.5 + 26.5i)T + 529iT^{2} \)
29 \( 1 - 11.5T + 841T^{2} \)
31 \( 1 - 30.8iT - 961T^{2} \)
37 \( 1 + (41.4 + 41.4i)T + 1.36e3iT^{2} \)
41 \( 1 + 17.1T + 1.68e3T^{2} \)
43 \( 1 + (25.1 - 25.1i)T - 1.84e3iT^{2} \)
47 \( 1 + (-45.2 - 45.2i)T + 2.20e3iT^{2} \)
53 \( 1 + (34.1 + 34.1i)T + 2.80e3iT^{2} \)
59 \( 1 + 47.6iT - 3.48e3T^{2} \)
61 \( 1 + 78.9iT - 3.72e3T^{2} \)
67 \( 1 + (-72.4 - 72.4i)T + 4.48e3iT^{2} \)
71 \( 1 - 49.0iT - 5.04e3T^{2} \)
73 \( 1 + (26.0 + 26.0i)T + 5.32e3iT^{2} \)
79 \( 1 + 75.8iT - 6.24e3T^{2} \)
83 \( 1 + (53.6 - 53.6i)T - 6.88e3iT^{2} \)
89 \( 1 + 14.0iT - 7.92e3T^{2} \)
97 \( 1 + (-25.9 + 25.9i)T - 9.40e3iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−12.76527564373619118974044656912, −12.24792539681856457294983459923, −11.15751579506757961381292746085, −10.18796318697728442935747647955, −8.581140693879308854001308571849, −7.69060432712437362407731593527, −6.65189029205087850561324072658, −4.84177291241758311034565264287, −3.80567008954487713144581923863, −0.24373590310307137208782387830, 1.98902820466104370209013269539, 4.56333742963854897160008816129, 5.78645893628489852851134024101, 7.02235572470009961547827578622, 8.367984216303151686652981069349, 9.810563423344152454230035010269, 10.80917448915012641772671297482, 11.80632974266075515300970747944, 12.07104749541768982510179398844, 13.86494274221510656664788780357

Graph of the $Z$-function along the critical line