Properties

Degree 2
Conductor $ 3 \cdot 5 \cdot 7 $
Sign $0.0148 - 0.999i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.86 + 1.86i)2-s + (0.707 − 0.707i)3-s − 4.93i·4-s + (1.50 + 1.65i)5-s + 2.63i·6-s + (1.46 + 2.20i)7-s + (5.45 + 5.45i)8-s − 1.00i·9-s + (−5.88 − 0.272i)10-s − 1.46·11-s + (−3.48 − 3.48i)12-s + (−0.887 + 0.887i)13-s + (−6.82 − 1.38i)14-s + (2.23 + 0.103i)15-s − 10.4·16-s + (2.10 + 2.10i)17-s + ⋯
L(s)  = 1  + (−1.31 + 1.31i)2-s + (0.408 − 0.408i)3-s − 2.46i·4-s + (0.673 + 0.739i)5-s + 1.07i·6-s + (0.552 + 0.833i)7-s + (1.92 + 1.92i)8-s − 0.333i·9-s + (−1.85 − 0.0862i)10-s − 0.441·11-s + (−1.00 − 1.00i)12-s + (−0.246 + 0.246i)13-s + (−1.82 − 0.370i)14-s + (0.576 + 0.0267i)15-s − 2.61·16-s + (0.510 + 0.510i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0148 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0148 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(105\)    =    \(3 \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $0.0148 - 0.999i$
motivic weight  =  \(1\)
character  :  $\chi_{105} (13, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 105,\ (\ :1/2),\ 0.0148 - 0.999i)$
$L(1)$  $\approx$  $0.495730 + 0.488443i$
$L(\frac12)$  $\approx$  $0.495730 + 0.488443i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 + (-0.707 + 0.707i)T \)
5 \( 1 + (-1.50 - 1.65i)T \)
7 \( 1 + (-1.46 - 2.20i)T \)
good2 \( 1 + (1.86 - 1.86i)T - 2iT^{2} \)
11 \( 1 + 1.46T + 11T^{2} \)
13 \( 1 + (0.887 - 0.887i)T - 13iT^{2} \)
17 \( 1 + (-2.10 - 2.10i)T + 17iT^{2} \)
19 \( 1 - 3.95T + 19T^{2} \)
23 \( 1 + (4.13 + 4.13i)T + 23iT^{2} \)
29 \( 1 + 5.18iT - 29T^{2} \)
31 \( 1 + 6.10iT - 31T^{2} \)
37 \( 1 + (-2.25 + 2.25i)T - 37iT^{2} \)
41 \( 1 - 0.769iT - 41T^{2} \)
43 \( 1 + (5.18 + 5.18i)T + 43iT^{2} \)
47 \( 1 + (8.57 + 8.57i)T + 47iT^{2} \)
53 \( 1 + (0.544 + 0.544i)T + 53iT^{2} \)
59 \( 1 - 3.19T + 59T^{2} \)
61 \( 1 - 1.42iT - 61T^{2} \)
67 \( 1 + (5.93 - 5.93i)T - 67iT^{2} \)
71 \( 1 - 7.62T + 71T^{2} \)
73 \( 1 + (6.81 - 6.81i)T - 73iT^{2} \)
79 \( 1 + 4.52iT - 79T^{2} \)
83 \( 1 + (-6.75 + 6.75i)T - 83iT^{2} \)
89 \( 1 + 1.19T + 89T^{2} \)
97 \( 1 + (-8.68 - 8.68i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−14.55944483661989576922037442129, −13.48272852613910135551127291986, −11.68662036268433540273570737340, −10.28327719353385448988586252810, −9.515172793580237621456720757206, −8.366494916474664197607149000481, −7.57732725952162339838629906581, −6.37883631461121083568821498647, −5.47735123296451014651197029554, −2.10960226248982348606731464705, 1.46633036438966141587857725653, 3.22407384298478943199269234692, 4.89258184762677422449342242951, 7.54460180996459533758885932607, 8.365547039885638152242529351586, 9.556529041155914007496126682850, 10.06532561236128682604127488016, 11.10359046236493969567210865335, 12.20257149359366406277724555486, 13.27342182338196175408537368165

Graph of the $Z$-function along the critical line