Properties

Label 8-105e4-1.1-c1e4-0-2
Degree $8$
Conductor $121550625$
Sign $1$
Analytic cond. $0.494157$
Root an. cond. $0.915657$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 9-s + 40·16-s − 10·25-s − 8·36-s + 14·49-s − 160·64-s − 4·79-s − 8·81-s + 80·100-s + 44·109-s − 26·121-s + 127-s + 131-s + 137-s + 139-s + 40·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 38·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 4·4-s + 1/3·9-s + 10·16-s − 2·25-s − 4/3·36-s + 2·49-s − 20·64-s − 0.450·79-s − 8/9·81-s + 8·100-s + 4.21·109-s − 2.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 10/3·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.92·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{4} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{4} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(0.494157\)
Root analytic conductor: \(0.915657\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{4} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.3081375071\)
\(L(\frac12)\) \(\approx\) \(0.3081375071\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2$ \( ( 1 - p T^{2} )^{2} \)
good2$C_2$ \( ( 1 + p T^{2} )^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2}( 1 + 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 + 19 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 29 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 - 9 T + p T^{2} )^{2}( 1 + 9 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2$ \( ( 1 + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 31 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2$ \( ( 1 + p T^{2} )^{4} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 + T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + p T^{2} )^{4} \)
97$C_2^2$ \( ( 1 - 149 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.04464913442371129729613491573, −9.897870467817826874600174401912, −9.579282568493256666071670355384, −9.224795699877389279750112784389, −9.109313852922315099750217969886, −8.870322178775433819924699679718, −8.489223512008288469056209217900, −8.236810291145322659413230385922, −8.123299798078636550615703189610, −7.66739092545290842768189535246, −7.30038568161409091706010431392, −7.26360276363798949662648662762, −6.21577155880049371115133005822, −6.15362876635385216636892125316, −5.62383035160571644093125849253, −5.45555262408562740704452774358, −5.15802979285512709996728673531, −4.71280274439209525804059574563, −4.28165375687532667794677697703, −4.21850871250961815429634595116, −3.82719619637920896474875253525, −3.47110627331364208458537828722, −2.94173244415565854990122695373, −1.72878415582342817772241598425, −0.66368167937209263439652868992, 0.66368167937209263439652868992, 1.72878415582342817772241598425, 2.94173244415565854990122695373, 3.47110627331364208458537828722, 3.82719619637920896474875253525, 4.21850871250961815429634595116, 4.28165375687532667794677697703, 4.71280274439209525804059574563, 5.15802979285512709996728673531, 5.45555262408562740704452774358, 5.62383035160571644093125849253, 6.15362876635385216636892125316, 6.21577155880049371115133005822, 7.26360276363798949662648662762, 7.30038568161409091706010431392, 7.66739092545290842768189535246, 8.123299798078636550615703189610, 8.236810291145322659413230385922, 8.489223512008288469056209217900, 8.870322178775433819924699679718, 9.109313852922315099750217969886, 9.224795699877389279750112784389, 9.579282568493256666071670355384, 9.897870467817826874600174401912, 10.04464913442371129729613491573

Graph of the $Z$-function along the critical line