Properties

Label 2-1045-1.1-c5-0-280
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.1·2-s + 30.5·3-s + 71.8·4-s + 25·5-s + 310.·6-s + 96.2·7-s + 406.·8-s + 687.·9-s + 254.·10-s + 121·11-s + 2.19e3·12-s − 1.15e3·13-s + 980.·14-s + 762.·15-s + 1.84e3·16-s + 322.·17-s + 7.01e3·18-s + 361·19-s + 1.79e3·20-s + 2.93e3·21-s + 1.23e3·22-s + 1.02e3·23-s + 1.24e4·24-s + 625·25-s − 1.17e4·26-s + 1.35e4·27-s + 6.91e3·28-s + ⋯
L(s)  = 1  + 1.80·2-s + 1.95·3-s + 2.24·4-s + 0.447·5-s + 3.52·6-s + 0.742·7-s + 2.24·8-s + 2.83·9-s + 0.805·10-s + 0.301·11-s + 4.39·12-s − 1.89·13-s + 1.33·14-s + 0.875·15-s + 1.80·16-s + 0.270·17-s + 5.10·18-s + 0.229·19-s + 1.00·20-s + 1.45·21-s + 0.543·22-s + 0.402·23-s + 4.39·24-s + 0.200·25-s − 3.40·26-s + 3.58·27-s + 1.66·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(18.86453916\)
\(L(\frac12)\) \(\approx\) \(18.86453916\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 10.1T + 32T^{2} \)
3 \( 1 - 30.5T + 243T^{2} \)
7 \( 1 - 96.2T + 1.68e4T^{2} \)
13 \( 1 + 1.15e3T + 3.71e5T^{2} \)
17 \( 1 - 322.T + 1.41e6T^{2} \)
23 \( 1 - 1.02e3T + 6.43e6T^{2} \)
29 \( 1 + 981.T + 2.05e7T^{2} \)
31 \( 1 + 9.76e3T + 2.86e7T^{2} \)
37 \( 1 + 9.50e3T + 6.93e7T^{2} \)
41 \( 1 - 6.42e3T + 1.15e8T^{2} \)
43 \( 1 + 2.14e4T + 1.47e8T^{2} \)
47 \( 1 - 1.19e4T + 2.29e8T^{2} \)
53 \( 1 + 2.44e4T + 4.18e8T^{2} \)
59 \( 1 - 1.74e4T + 7.14e8T^{2} \)
61 \( 1 - 1.44e4T + 8.44e8T^{2} \)
67 \( 1 - 4.33e4T + 1.35e9T^{2} \)
71 \( 1 + 3.73e4T + 1.80e9T^{2} \)
73 \( 1 - 3.15e4T + 2.07e9T^{2} \)
79 \( 1 - 8.36e4T + 3.07e9T^{2} \)
83 \( 1 + 6.60e4T + 3.93e9T^{2} \)
89 \( 1 + 2.36e4T + 5.58e9T^{2} \)
97 \( 1 - 1.83e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.228768470058928528622897568236, −8.133996016742353962814829528773, −7.29984922982918480850373218449, −6.87101767543977921280736542944, −5.30194366790276337715335866894, −4.75200848353484938891158044498, −3.78726049447521802975763928689, −3.04835848879158217622665488729, −2.17958890106075717700026901303, −1.67088391911289417967939793856, 1.67088391911289417967939793856, 2.17958890106075717700026901303, 3.04835848879158217622665488729, 3.78726049447521802975763928689, 4.75200848353484938891158044498, 5.30194366790276337715335866894, 6.87101767543977921280736542944, 7.29984922982918480850373218449, 8.133996016742353962814829528773, 9.228768470058928528622897568236

Graph of the $Z$-function along the critical line