Properties

Label 2-1045-1.1-c5-0-61
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.38·2-s + 8.61·3-s − 2.96·4-s + 25·5-s + 46.4·6-s − 158.·7-s − 188.·8-s − 168.·9-s + 134.·10-s + 121·11-s − 25.4·12-s − 522.·13-s − 853.·14-s + 215.·15-s − 920.·16-s − 1.46e3·17-s − 909.·18-s + 361·19-s − 74.0·20-s − 1.36e3·21-s + 652.·22-s + 2.55e3·23-s − 1.62e3·24-s + 625·25-s − 2.81e3·26-s − 3.54e3·27-s + 468.·28-s + ⋯
L(s)  = 1  + 0.952·2-s + 0.552·3-s − 0.0925·4-s + 0.447·5-s + 0.526·6-s − 1.22·7-s − 1.04·8-s − 0.694·9-s + 0.426·10-s + 0.301·11-s − 0.0511·12-s − 0.858·13-s − 1.16·14-s + 0.247·15-s − 0.898·16-s − 1.23·17-s − 0.661·18-s + 0.229·19-s − 0.0413·20-s − 0.674·21-s + 0.287·22-s + 1.00·23-s − 0.574·24-s + 0.200·25-s − 0.817·26-s − 0.936·27-s + 0.113·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.157100299\)
\(L(\frac12)\) \(\approx\) \(2.157100299\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 5.38T + 32T^{2} \)
3 \( 1 - 8.61T + 243T^{2} \)
7 \( 1 + 158.T + 1.68e4T^{2} \)
13 \( 1 + 522.T + 3.71e5T^{2} \)
17 \( 1 + 1.46e3T + 1.41e6T^{2} \)
23 \( 1 - 2.55e3T + 6.43e6T^{2} \)
29 \( 1 - 250.T + 2.05e7T^{2} \)
31 \( 1 - 731.T + 2.86e7T^{2} \)
37 \( 1 + 5.63e3T + 6.93e7T^{2} \)
41 \( 1 - 2.00e4T + 1.15e8T^{2} \)
43 \( 1 - 1.55e4T + 1.47e8T^{2} \)
47 \( 1 + 1.29e4T + 2.29e8T^{2} \)
53 \( 1 - 2.14e4T + 4.18e8T^{2} \)
59 \( 1 - 1.78e4T + 7.14e8T^{2} \)
61 \( 1 + 3.73e3T + 8.44e8T^{2} \)
67 \( 1 + 7.33e3T + 1.35e9T^{2} \)
71 \( 1 + 4.02e4T + 1.80e9T^{2} \)
73 \( 1 + 1.11e4T + 2.07e9T^{2} \)
79 \( 1 - 6.87e4T + 3.07e9T^{2} \)
83 \( 1 + 3.22e4T + 3.93e9T^{2} \)
89 \( 1 - 6.91e4T + 5.58e9T^{2} \)
97 \( 1 - 8.29e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.198801783715524440346253713718, −8.667889142869755993637870364306, −7.30157635800994072745458237195, −6.43490526328782989528123965216, −5.74807374900684664109668862419, −4.81028676781895498649852857194, −3.84454628274575872079562706641, −2.93544672333016497330511806301, −2.38938658679717735124445363532, −0.49993249429340825175686161839, 0.49993249429340825175686161839, 2.38938658679717735124445363532, 2.93544672333016497330511806301, 3.84454628274575872079562706641, 4.81028676781895498649852857194, 5.74807374900684664109668862419, 6.43490526328782989528123965216, 7.30157635800994072745458237195, 8.667889142869755993637870364306, 9.198801783715524440346253713718

Graph of the $Z$-function along the critical line