Properties

Label 2-1045-1.1-c5-0-54
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.29·2-s − 27.4·3-s − 26.7·4-s + 25·5-s − 63.0·6-s − 30.5·7-s − 134.·8-s + 511.·9-s + 57.4·10-s + 121·11-s + 733.·12-s − 226.·13-s − 70.1·14-s − 686.·15-s + 545.·16-s + 52.5·17-s + 1.17e3·18-s + 361·19-s − 668.·20-s + 839.·21-s + 277.·22-s + 3.12e3·23-s + 3.70e3·24-s + 625·25-s − 520.·26-s − 7.36e3·27-s + 816.·28-s + ⋯
L(s)  = 1  + 0.405·2-s − 1.76·3-s − 0.835·4-s + 0.447·5-s − 0.715·6-s − 0.235·7-s − 0.744·8-s + 2.10·9-s + 0.181·10-s + 0.301·11-s + 1.47·12-s − 0.372·13-s − 0.0956·14-s − 0.787·15-s + 0.532·16-s + 0.0441·17-s + 0.853·18-s + 0.229·19-s − 0.373·20-s + 0.415·21-s + 0.122·22-s + 1.23·23-s + 1.31·24-s + 0.200·25-s − 0.151·26-s − 1.94·27-s + 0.196·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.8765680151\)
\(L(\frac12)\) \(\approx\) \(0.8765680151\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 2.29T + 32T^{2} \)
3 \( 1 + 27.4T + 243T^{2} \)
7 \( 1 + 30.5T + 1.68e4T^{2} \)
13 \( 1 + 226.T + 3.71e5T^{2} \)
17 \( 1 - 52.5T + 1.41e6T^{2} \)
23 \( 1 - 3.12e3T + 6.43e6T^{2} \)
29 \( 1 - 1.75e3T + 2.05e7T^{2} \)
31 \( 1 - 3.43e3T + 2.86e7T^{2} \)
37 \( 1 + 2.72e3T + 6.93e7T^{2} \)
41 \( 1 + 8.13e3T + 1.15e8T^{2} \)
43 \( 1 + 1.72e4T + 1.47e8T^{2} \)
47 \( 1 - 1.77e4T + 2.29e8T^{2} \)
53 \( 1 - 5.35e3T + 4.18e8T^{2} \)
59 \( 1 + 4.13e4T + 7.14e8T^{2} \)
61 \( 1 - 3.45e4T + 8.44e8T^{2} \)
67 \( 1 - 5.30e4T + 1.35e9T^{2} \)
71 \( 1 + 5.91e4T + 1.80e9T^{2} \)
73 \( 1 + 6.61e4T + 2.07e9T^{2} \)
79 \( 1 + 5.20e4T + 3.07e9T^{2} \)
83 \( 1 - 4.75e4T + 3.93e9T^{2} \)
89 \( 1 + 3.49e4T + 5.58e9T^{2} \)
97 \( 1 - 1.64e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.466609189646409620985132920272, −8.462541474008496116942339748717, −7.09859669682102302305036004759, −6.44047273969096019617725798807, −5.60063281979454286221461002611, −5.01797673222493468663439920122, −4.33526289904116647198912032802, −3.10949249338397537096035285317, −1.37877054878160703224880344011, −0.46320072153534287670135658558, 0.46320072153534287670135658558, 1.37877054878160703224880344011, 3.10949249338397537096035285317, 4.33526289904116647198912032802, 5.01797673222493468663439920122, 5.60063281979454286221461002611, 6.44047273969096019617725798807, 7.09859669682102302305036004759, 8.462541474008496116942339748717, 9.466609189646409620985132920272

Graph of the $Z$-function along the critical line