Properties

Label 2-1045-1.1-c5-0-101
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.02·2-s + 3.76·3-s − 6.70·4-s + 25·5-s − 18.9·6-s + 170.·7-s + 194.·8-s − 228.·9-s − 125.·10-s + 121·11-s − 25.2·12-s − 468.·13-s − 855.·14-s + 94.0·15-s − 764.·16-s + 646.·17-s + 1.15e3·18-s + 361·19-s − 167.·20-s + 639.·21-s − 608.·22-s + 2.56e3·23-s + 732.·24-s + 625·25-s + 2.35e3·26-s − 1.77e3·27-s − 1.14e3·28-s + ⋯
L(s)  = 1  − 0.889·2-s + 0.241·3-s − 0.209·4-s + 0.447·5-s − 0.214·6-s + 1.31·7-s + 1.07·8-s − 0.941·9-s − 0.397·10-s + 0.301·11-s − 0.0505·12-s − 0.768·13-s − 1.16·14-s + 0.107·15-s − 0.746·16-s + 0.542·17-s + 0.837·18-s + 0.229·19-s − 0.0937·20-s + 0.316·21-s − 0.268·22-s + 1.00·23-s + 0.259·24-s + 0.200·25-s + 0.682·26-s − 0.468·27-s − 0.275·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.587871316\)
\(L(\frac12)\) \(\approx\) \(1.587871316\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 5.02T + 32T^{2} \)
3 \( 1 - 3.76T + 243T^{2} \)
7 \( 1 - 170.T + 1.68e4T^{2} \)
13 \( 1 + 468.T + 3.71e5T^{2} \)
17 \( 1 - 646.T + 1.41e6T^{2} \)
23 \( 1 - 2.56e3T + 6.43e6T^{2} \)
29 \( 1 + 4.47e3T + 2.05e7T^{2} \)
31 \( 1 + 3.16e3T + 2.86e7T^{2} \)
37 \( 1 + 257.T + 6.93e7T^{2} \)
41 \( 1 - 1.10e4T + 1.15e8T^{2} \)
43 \( 1 - 1.65e4T + 1.47e8T^{2} \)
47 \( 1 + 2.00e4T + 2.29e8T^{2} \)
53 \( 1 - 2.36e4T + 4.18e8T^{2} \)
59 \( 1 - 1.80e3T + 7.14e8T^{2} \)
61 \( 1 - 2.31e4T + 8.44e8T^{2} \)
67 \( 1 - 5.32e3T + 1.35e9T^{2} \)
71 \( 1 - 7.79e4T + 1.80e9T^{2} \)
73 \( 1 + 2.85e4T + 2.07e9T^{2} \)
79 \( 1 - 8.46e4T + 3.07e9T^{2} \)
83 \( 1 + 2.60e3T + 3.93e9T^{2} \)
89 \( 1 + 1.11e5T + 5.58e9T^{2} \)
97 \( 1 + 3.09e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.244291021476141589934830033532, −8.392779763592184981988525249817, −7.81473139947577486378532059710, −7.03862981124973427251654825921, −5.55124576648532111928107256263, −5.05423133072831057537782877822, −3.93892935502362020682509943321, −2.55142189572468678041826636571, −1.60521410687306818772764693284, −0.64943607206998097484964796504, 0.64943607206998097484964796504, 1.60521410687306818772764693284, 2.55142189572468678041826636571, 3.93892935502362020682509943321, 5.05423133072831057537782877822, 5.55124576648532111928107256263, 7.03862981124973427251654825921, 7.81473139947577486378532059710, 8.392779763592184981988525249817, 9.244291021476141589934830033532

Graph of the $Z$-function along the critical line