Properties

Label 2-1045-1.1-c5-0-67
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.68·2-s − 13.3·3-s + 43.4·4-s − 25·5-s + 116.·6-s − 102.·7-s − 99.1·8-s − 63.7·9-s + 217.·10-s − 121·11-s − 581.·12-s + 752.·13-s + 888.·14-s + 334.·15-s − 528.·16-s + 1.29e3·17-s + 553.·18-s + 361·19-s − 1.08e3·20-s + 1.37e3·21-s + 1.05e3·22-s − 194.·23-s + 1.32e3·24-s + 625·25-s − 6.53e3·26-s + 4.10e3·27-s − 4.44e3·28-s + ⋯
L(s)  = 1  − 1.53·2-s − 0.858·3-s + 1.35·4-s − 0.447·5-s + 1.31·6-s − 0.789·7-s − 0.547·8-s − 0.262·9-s + 0.686·10-s − 0.301·11-s − 1.16·12-s + 1.23·13-s + 1.21·14-s + 0.384·15-s − 0.516·16-s + 1.08·17-s + 0.402·18-s + 0.229·19-s − 0.606·20-s + 0.677·21-s + 0.462·22-s − 0.0767·23-s + 0.470·24-s + 0.200·25-s − 1.89·26-s + 1.08·27-s − 1.07·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.5564775982\)
\(L(\frac12)\) \(\approx\) \(0.5564775982\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 8.68T + 32T^{2} \)
3 \( 1 + 13.3T + 243T^{2} \)
7 \( 1 + 102.T + 1.68e4T^{2} \)
13 \( 1 - 752.T + 3.71e5T^{2} \)
17 \( 1 - 1.29e3T + 1.41e6T^{2} \)
23 \( 1 + 194.T + 6.43e6T^{2} \)
29 \( 1 - 1.00e3T + 2.05e7T^{2} \)
31 \( 1 - 4.19e3T + 2.86e7T^{2} \)
37 \( 1 - 6.02e3T + 6.93e7T^{2} \)
41 \( 1 - 1.95e4T + 1.15e8T^{2} \)
43 \( 1 - 3.49e3T + 1.47e8T^{2} \)
47 \( 1 + 2.36e4T + 2.29e8T^{2} \)
53 \( 1 + 1.36e4T + 4.18e8T^{2} \)
59 \( 1 - 4.00e4T + 7.14e8T^{2} \)
61 \( 1 - 1.67e4T + 8.44e8T^{2} \)
67 \( 1 - 1.49e4T + 1.35e9T^{2} \)
71 \( 1 - 3.23e4T + 1.80e9T^{2} \)
73 \( 1 - 4.83e4T + 2.07e9T^{2} \)
79 \( 1 - 9.50e4T + 3.07e9T^{2} \)
83 \( 1 - 4.66e4T + 3.93e9T^{2} \)
89 \( 1 - 1.17e5T + 5.58e9T^{2} \)
97 \( 1 + 7.01e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.312594201241807389242858984023, −8.253376529635020705342352816723, −7.87546714736636738573777642740, −6.67074544011243655369172118381, −6.17087793476916623227107142934, −5.10510214741010880379758701592, −3.73359287074784281278856513228, −2.65618987134653710133856355236, −1.09551370921008192020726240332, −0.53618453772101905326399509333, 0.53618453772101905326399509333, 1.09551370921008192020726240332, 2.65618987134653710133856355236, 3.73359287074784281278856513228, 5.10510214741010880379758701592, 6.17087793476916623227107142934, 6.67074544011243655369172118381, 7.87546714736636738573777642740, 8.253376529635020705342352816723, 9.312594201241807389242858984023

Graph of the $Z$-function along the critical line