Properties

Label 2-1045-1.1-c5-0-91
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.1·2-s − 12.6·3-s + 72.0·4-s − 25·5-s − 128.·6-s − 65.3·7-s + 408.·8-s − 83.0·9-s − 254.·10-s − 121·11-s − 910.·12-s − 396.·13-s − 667.·14-s + 316.·15-s + 1.86e3·16-s − 1.19e3·17-s − 847.·18-s + 361·19-s − 1.80e3·20-s + 826.·21-s − 1.23e3·22-s + 2.16e3·23-s − 5.16e3·24-s + 625·25-s − 4.04e3·26-s + 4.12e3·27-s − 4.71e3·28-s + ⋯
L(s)  = 1  + 1.80·2-s − 0.811·3-s + 2.25·4-s − 0.447·5-s − 1.46·6-s − 0.504·7-s + 2.25·8-s − 0.341·9-s − 0.806·10-s − 0.301·11-s − 1.82·12-s − 0.651·13-s − 0.909·14-s + 0.362·15-s + 1.81·16-s − 1.00·17-s − 0.616·18-s + 0.229·19-s − 1.00·20-s + 0.409·21-s − 0.543·22-s + 0.851·23-s − 1.83·24-s + 0.200·25-s − 1.17·26-s + 1.08·27-s − 1.13·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.625130825\)
\(L(\frac12)\) \(\approx\) \(3.625130825\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 10.1T + 32T^{2} \)
3 \( 1 + 12.6T + 243T^{2} \)
7 \( 1 + 65.3T + 1.68e4T^{2} \)
13 \( 1 + 396.T + 3.71e5T^{2} \)
17 \( 1 + 1.19e3T + 1.41e6T^{2} \)
23 \( 1 - 2.16e3T + 6.43e6T^{2} \)
29 \( 1 - 2.92e3T + 2.05e7T^{2} \)
31 \( 1 - 802.T + 2.86e7T^{2} \)
37 \( 1 - 1.04e3T + 6.93e7T^{2} \)
41 \( 1 - 9.04e3T + 1.15e8T^{2} \)
43 \( 1 + 1.63e4T + 1.47e8T^{2} \)
47 \( 1 - 2.68e4T + 2.29e8T^{2} \)
53 \( 1 - 2.30e4T + 4.18e8T^{2} \)
59 \( 1 + 3.15e4T + 7.14e8T^{2} \)
61 \( 1 - 2.95e4T + 8.44e8T^{2} \)
67 \( 1 - 5.26e4T + 1.35e9T^{2} \)
71 \( 1 + 231.T + 1.80e9T^{2} \)
73 \( 1 - 5.90e4T + 2.07e9T^{2} \)
79 \( 1 - 5.63e4T + 3.07e9T^{2} \)
83 \( 1 - 3.84e4T + 3.93e9T^{2} \)
89 \( 1 - 9.19e4T + 5.58e9T^{2} \)
97 \( 1 + 5.52e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.282322843659406836274021508921, −8.048537735630585192779712822288, −6.89579560072103097982029115476, −6.54246249480782643901299579604, −5.50121248828066752799908481916, −4.96091596273864840686172049282, −4.11895214385884944557387894196, −3.08022867817702700174303515539, −2.34228634058998271809329144434, −0.61772677861375128053389653690, 0.61772677861375128053389653690, 2.34228634058998271809329144434, 3.08022867817702700174303515539, 4.11895214385884944557387894196, 4.96091596273864840686172049282, 5.50121248828066752799908481916, 6.54246249480782643901299579604, 6.89579560072103097982029115476, 8.048537735630585192779712822288, 9.282322843659406836274021508921

Graph of the $Z$-function along the critical line