Properties

Label 2-1045-1.1-c5-0-238
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.53·2-s + 28.4·3-s + 40.7·4-s − 25·5-s + 242.·6-s + 183.·7-s + 75.0·8-s + 564.·9-s − 213.·10-s − 121·11-s + 1.15e3·12-s − 548.·13-s + 1.56e3·14-s − 710.·15-s − 665.·16-s + 972.·17-s + 4.81e3·18-s + 361·19-s − 1.01e3·20-s + 5.22e3·21-s − 1.03e3·22-s + 2.15e3·23-s + 2.13e3·24-s + 625·25-s − 4.67e3·26-s + 9.13e3·27-s + 7.49e3·28-s + ⋯
L(s)  = 1  + 1.50·2-s + 1.82·3-s + 1.27·4-s − 0.447·5-s + 2.74·6-s + 1.41·7-s + 0.414·8-s + 2.32·9-s − 0.674·10-s − 0.301·11-s + 2.32·12-s − 0.899·13-s + 2.13·14-s − 0.815·15-s − 0.649·16-s + 0.816·17-s + 3.50·18-s + 0.229·19-s − 0.570·20-s + 2.58·21-s − 0.454·22-s + 0.847·23-s + 0.755·24-s + 0.200·25-s − 1.35·26-s + 2.41·27-s + 1.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(12.74377239\)
\(L(\frac12)\) \(\approx\) \(12.74377239\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 8.53T + 32T^{2} \)
3 \( 1 - 28.4T + 243T^{2} \)
7 \( 1 - 183.T + 1.68e4T^{2} \)
13 \( 1 + 548.T + 3.71e5T^{2} \)
17 \( 1 - 972.T + 1.41e6T^{2} \)
23 \( 1 - 2.15e3T + 6.43e6T^{2} \)
29 \( 1 + 1.76e3T + 2.05e7T^{2} \)
31 \( 1 - 1.03e4T + 2.86e7T^{2} \)
37 \( 1 - 6.63e3T + 6.93e7T^{2} \)
41 \( 1 + 1.25e3T + 1.15e8T^{2} \)
43 \( 1 - 2.72e3T + 1.47e8T^{2} \)
47 \( 1 - 865.T + 2.29e8T^{2} \)
53 \( 1 - 1.20e4T + 4.18e8T^{2} \)
59 \( 1 + 9.13e3T + 7.14e8T^{2} \)
61 \( 1 + 1.65e4T + 8.44e8T^{2} \)
67 \( 1 - 2.17e4T + 1.35e9T^{2} \)
71 \( 1 + 1.09e4T + 1.80e9T^{2} \)
73 \( 1 - 5.50e4T + 2.07e9T^{2} \)
79 \( 1 + 6.16e4T + 3.07e9T^{2} \)
83 \( 1 - 7.40e4T + 3.93e9T^{2} \)
89 \( 1 - 3.17e4T + 5.58e9T^{2} \)
97 \( 1 + 1.54e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.023124549372123784917778211974, −8.068524497410231838695977970762, −7.70014432226001860716362459815, −6.79628991517543449466709322520, −5.28962908354758296070350105137, −4.62945246320615609716821983751, −3.94938439001056930331954914495, −2.93532896949571199610357195048, −2.42199097352111786580488250218, −1.24867994421228399222139021251, 1.24867994421228399222139021251, 2.42199097352111786580488250218, 2.93532896949571199610357195048, 3.94938439001056930331954914495, 4.62945246320615609716821983751, 5.28962908354758296070350105137, 6.79628991517543449466709322520, 7.70014432226001860716362459815, 8.068524497410231838695977970762, 9.023124549372123784917778211974

Graph of the $Z$-function along the critical line