Properties

Label 2-1045-1.1-c5-0-53
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7.62·2-s − 7.42·3-s + 26.1·4-s − 25·5-s − 56.6·6-s − 46.3·7-s − 44.2·8-s − 187.·9-s − 190.·10-s − 121·11-s − 194.·12-s + 680.·13-s − 353.·14-s + 185.·15-s − 1.17e3·16-s − 224.·17-s − 1.43e3·18-s + 361·19-s − 654.·20-s + 344.·21-s − 923.·22-s − 2.28e3·23-s + 328.·24-s + 625·25-s + 5.18e3·26-s + 3.20e3·27-s − 1.21e3·28-s + ⋯
L(s)  = 1  + 1.34·2-s − 0.476·3-s + 0.818·4-s − 0.447·5-s − 0.642·6-s − 0.357·7-s − 0.244·8-s − 0.772·9-s − 0.603·10-s − 0.301·11-s − 0.390·12-s + 1.11·13-s − 0.482·14-s + 0.213·15-s − 1.14·16-s − 0.188·17-s − 1.04·18-s + 0.229·19-s − 0.366·20-s + 0.170·21-s − 0.406·22-s − 0.901·23-s + 0.116·24-s + 0.200·25-s + 1.50·26-s + 0.844·27-s − 0.292·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.815001941\)
\(L(\frac12)\) \(\approx\) \(1.815001941\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 7.62T + 32T^{2} \)
3 \( 1 + 7.42T + 243T^{2} \)
7 \( 1 + 46.3T + 1.68e4T^{2} \)
13 \( 1 - 680.T + 3.71e5T^{2} \)
17 \( 1 + 224.T + 1.41e6T^{2} \)
23 \( 1 + 2.28e3T + 6.43e6T^{2} \)
29 \( 1 + 2.13e3T + 2.05e7T^{2} \)
31 \( 1 + 8.24e3T + 2.86e7T^{2} \)
37 \( 1 + 3.99e3T + 6.93e7T^{2} \)
41 \( 1 + 8.92e3T + 1.15e8T^{2} \)
43 \( 1 - 3.35e3T + 1.47e8T^{2} \)
47 \( 1 - 7.59e3T + 2.29e8T^{2} \)
53 \( 1 - 1.52e4T + 4.18e8T^{2} \)
59 \( 1 - 1.06e4T + 7.14e8T^{2} \)
61 \( 1 - 2.91e4T + 8.44e8T^{2} \)
67 \( 1 - 5.33e4T + 1.35e9T^{2} \)
71 \( 1 + 7.11e3T + 1.80e9T^{2} \)
73 \( 1 + 1.87e4T + 2.07e9T^{2} \)
79 \( 1 - 2.33e3T + 3.07e9T^{2} \)
83 \( 1 + 1.59e4T + 3.93e9T^{2} \)
89 \( 1 - 7.32e4T + 5.58e9T^{2} \)
97 \( 1 - 6.55e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.052718725248782558256218158342, −8.387701145744393250309890334883, −7.20764492169585351438316070378, −6.27100065248664466179592792047, −5.68735330005422789993153914908, −4.95974653771510056313177435159, −3.81208311536548219650289302638, −3.35521827074826745217980303218, −2.13259867934357492546089817857, −0.46023653298570170434455396088, 0.46023653298570170434455396088, 2.13259867934357492546089817857, 3.35521827074826745217980303218, 3.81208311536548219650289302638, 4.95974653771510056313177435159, 5.68735330005422789993153914908, 6.27100065248664466179592792047, 7.20764492169585351438316070378, 8.387701145744393250309890334883, 9.052718725248782558256218158342

Graph of the $Z$-function along the critical line