Properties

Label 2-1045-1.1-c5-0-14
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.63·2-s − 0.104·3-s + 12.0·4-s − 25·5-s − 0.691·6-s − 82.7·7-s − 132.·8-s − 242.·9-s − 165.·10-s − 121·11-s − 1.25·12-s − 1.15e3·13-s − 549.·14-s + 2.60·15-s − 1.26e3·16-s − 1.60e3·17-s − 1.61e3·18-s + 361·19-s − 301.·20-s + 8.61·21-s − 803.·22-s − 2.23e3·23-s + 13.7·24-s + 625·25-s − 7.69e3·26-s + 50.6·27-s − 997.·28-s + ⋯
L(s)  = 1  + 1.17·2-s − 0.00668·3-s + 0.376·4-s − 0.447·5-s − 0.00783·6-s − 0.638·7-s − 0.731·8-s − 0.999·9-s − 0.524·10-s − 0.301·11-s − 0.00251·12-s − 1.90·13-s − 0.748·14-s + 0.00298·15-s − 1.23·16-s − 1.34·17-s − 1.17·18-s + 0.229·19-s − 0.168·20-s + 0.00426·21-s − 0.353·22-s − 0.882·23-s + 0.00488·24-s + 0.200·25-s − 2.23·26-s + 0.0133·27-s − 0.240·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.3449479591\)
\(L(\frac12)\) \(\approx\) \(0.3449479591\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 6.63T + 32T^{2} \)
3 \( 1 + 0.104T + 243T^{2} \)
7 \( 1 + 82.7T + 1.68e4T^{2} \)
13 \( 1 + 1.15e3T + 3.71e5T^{2} \)
17 \( 1 + 1.60e3T + 1.41e6T^{2} \)
23 \( 1 + 2.23e3T + 6.43e6T^{2} \)
29 \( 1 + 2.57e3T + 2.05e7T^{2} \)
31 \( 1 - 7.57e3T + 2.86e7T^{2} \)
37 \( 1 - 7.95e3T + 6.93e7T^{2} \)
41 \( 1 + 1.33e4T + 1.15e8T^{2} \)
43 \( 1 - 2.22e4T + 1.47e8T^{2} \)
47 \( 1 - 1.37e3T + 2.29e8T^{2} \)
53 \( 1 - 7.03e3T + 4.18e8T^{2} \)
59 \( 1 + 4.37e3T + 7.14e8T^{2} \)
61 \( 1 - 3.96e4T + 8.44e8T^{2} \)
67 \( 1 + 7.02e4T + 1.35e9T^{2} \)
71 \( 1 + 4.49e4T + 1.80e9T^{2} \)
73 \( 1 + 4.13e4T + 2.07e9T^{2} \)
79 \( 1 + 2.22e4T + 3.07e9T^{2} \)
83 \( 1 - 5.94e4T + 3.93e9T^{2} \)
89 \( 1 + 1.03e4T + 5.58e9T^{2} \)
97 \( 1 + 1.79e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.230739603636758439367630097488, −8.334322128699583086805538348372, −7.32994570565699790010048758286, −6.43109785052415766849944647393, −5.63893391408010866627757203039, −4.75464102727670972753677569857, −4.09056116186884280168977135290, −2.87506832416563365607552427298, −2.46373776816923026781149312651, −0.19269376995781381808525477807, 0.19269376995781381808525477807, 2.46373776816923026781149312651, 2.87506832416563365607552427298, 4.09056116186884280168977135290, 4.75464102727670972753677569857, 5.63893391408010866627757203039, 6.43109785052415766849944647393, 7.32994570565699790010048758286, 8.334322128699583086805538348372, 9.230739603636758439367630097488

Graph of the $Z$-function along the critical line