Properties

Label 2-1045-1.1-c5-0-15
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.98·2-s − 20.3·3-s − 16.1·4-s − 25·5-s − 80.9·6-s + 158.·7-s − 191.·8-s + 170.·9-s − 99.5·10-s − 121·11-s + 328.·12-s − 696.·13-s + 630.·14-s + 508.·15-s − 246.·16-s − 2.16e3·17-s + 677.·18-s + 361·19-s + 403.·20-s − 3.21e3·21-s − 481.·22-s + 2.91e3·23-s + 3.89e3·24-s + 625·25-s − 2.77e3·26-s + 1.48e3·27-s − 2.55e3·28-s + ⋯
L(s)  = 1  + 0.703·2-s − 1.30·3-s − 0.504·4-s − 0.447·5-s − 0.917·6-s + 1.22·7-s − 1.05·8-s + 0.700·9-s − 0.314·10-s − 0.301·11-s + 0.657·12-s − 1.14·13-s + 0.859·14-s + 0.583·15-s − 0.240·16-s − 1.81·17-s + 0.492·18-s + 0.229·19-s + 0.225·20-s − 1.59·21-s − 0.212·22-s + 1.14·23-s + 1.38·24-s + 0.200·25-s − 0.804·26-s + 0.390·27-s − 0.616·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2214640134\)
\(L(\frac12)\) \(\approx\) \(0.2214640134\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 3.98T + 32T^{2} \)
3 \( 1 + 20.3T + 243T^{2} \)
7 \( 1 - 158.T + 1.68e4T^{2} \)
13 \( 1 + 696.T + 3.71e5T^{2} \)
17 \( 1 + 2.16e3T + 1.41e6T^{2} \)
23 \( 1 - 2.91e3T + 6.43e6T^{2} \)
29 \( 1 - 1.49e3T + 2.05e7T^{2} \)
31 \( 1 + 5.99e3T + 2.86e7T^{2} \)
37 \( 1 + 1.56e4T + 6.93e7T^{2} \)
41 \( 1 + 1.04e4T + 1.15e8T^{2} \)
43 \( 1 + 1.59e4T + 1.47e8T^{2} \)
47 \( 1 + 1.45e4T + 2.29e8T^{2} \)
53 \( 1 - 389.T + 4.18e8T^{2} \)
59 \( 1 + 8.39e3T + 7.14e8T^{2} \)
61 \( 1 + 1.72e4T + 8.44e8T^{2} \)
67 \( 1 + 4.95e4T + 1.35e9T^{2} \)
71 \( 1 + 6.85e4T + 1.80e9T^{2} \)
73 \( 1 + 911.T + 2.07e9T^{2} \)
79 \( 1 - 3.29e4T + 3.07e9T^{2} \)
83 \( 1 - 4.62e3T + 3.93e9T^{2} \)
89 \( 1 + 4.81e4T + 5.58e9T^{2} \)
97 \( 1 - 1.20e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.063907155921012170819942354624, −8.431210009589293438663229186651, −7.26354267646581501467513694564, −6.53874368736489825004943610930, −5.30685749185993426908374612699, −4.94939504569454534025019797082, −4.44265477621157942018452483314, −3.10227910717787618664515074142, −1.69412719028216158630036977339, −0.19342058553487729534264911316, 0.19342058553487729534264911316, 1.69412719028216158630036977339, 3.10227910717787618664515074142, 4.44265477621157942018452483314, 4.94939504569454534025019797082, 5.30685749185993426908374612699, 6.53874368736489825004943610930, 7.26354267646581501467513694564, 8.431210009589293438663229186651, 9.063907155921012170819942354624

Graph of the $Z$-function along the critical line