Properties

Label 2-1045-1.1-c5-0-8
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.71·2-s + 11.7·3-s − 29.0·4-s − 25·5-s + 20.1·6-s − 141.·7-s − 104.·8-s − 105.·9-s − 42.8·10-s − 121·11-s − 341.·12-s + 164.·13-s − 242.·14-s − 293.·15-s + 750.·16-s − 2.00e3·17-s − 180.·18-s + 361·19-s + 726.·20-s − 1.65e3·21-s − 207.·22-s − 2.67e3·23-s − 1.22e3·24-s + 625·25-s + 282.·26-s − 4.08e3·27-s + 4.10e3·28-s + ⋯
L(s)  = 1  + 0.303·2-s + 0.753·3-s − 0.908·4-s − 0.447·5-s + 0.228·6-s − 1.08·7-s − 0.578·8-s − 0.432·9-s − 0.135·10-s − 0.301·11-s − 0.683·12-s + 0.270·13-s − 0.330·14-s − 0.336·15-s + 0.732·16-s − 1.68·17-s − 0.131·18-s + 0.229·19-s + 0.406·20-s − 0.820·21-s − 0.0914·22-s − 1.05·23-s − 0.435·24-s + 0.200·25-s + 0.0818·26-s − 1.07·27-s + 0.989·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.1503407023\)
\(L(\frac12)\) \(\approx\) \(0.1503407023\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 1.71T + 32T^{2} \)
3 \( 1 - 11.7T + 243T^{2} \)
7 \( 1 + 141.T + 1.68e4T^{2} \)
13 \( 1 - 164.T + 3.71e5T^{2} \)
17 \( 1 + 2.00e3T + 1.41e6T^{2} \)
23 \( 1 + 2.67e3T + 6.43e6T^{2} \)
29 \( 1 + 3.62e3T + 2.05e7T^{2} \)
31 \( 1 + 1.02e4T + 2.86e7T^{2} \)
37 \( 1 - 1.11e4T + 6.93e7T^{2} \)
41 \( 1 - 7.94T + 1.15e8T^{2} \)
43 \( 1 + 1.57e4T + 1.47e8T^{2} \)
47 \( 1 + 2.05e4T + 2.29e8T^{2} \)
53 \( 1 + 2.75e4T + 4.18e8T^{2} \)
59 \( 1 + 9.33e3T + 7.14e8T^{2} \)
61 \( 1 + 56.2T + 8.44e8T^{2} \)
67 \( 1 - 6.85e3T + 1.35e9T^{2} \)
71 \( 1 - 2.10e4T + 1.80e9T^{2} \)
73 \( 1 + 6.11e4T + 2.07e9T^{2} \)
79 \( 1 - 9.23e4T + 3.07e9T^{2} \)
83 \( 1 - 3.30e4T + 3.93e9T^{2} \)
89 \( 1 - 1.02e5T + 5.58e9T^{2} \)
97 \( 1 - 1.25e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.307123192677524136166390443557, −8.413637039427981477627821064437, −7.77433497652145879563298134601, −6.57286498456007037923846251341, −5.77331125576160472971349352011, −4.67831679230847416128522196503, −3.70484427951843944281257339692, −3.21647845279790291461150418057, −2.04006513116039256592540486435, −0.14419073388448932213991284196, 0.14419073388448932213991284196, 2.04006513116039256592540486435, 3.21647845279790291461150418057, 3.70484427951843944281257339692, 4.67831679230847416128522196503, 5.77331125576160472971349352011, 6.57286498456007037923846251341, 7.77433497652145879563298134601, 8.413637039427981477627821064437, 9.307123192677524136166390443557

Graph of the $Z$-function along the critical line