Properties

Label 2-1045-1.1-c5-0-57
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.13·2-s + 23.9·3-s − 30.7·4-s − 25·5-s + 27.2·6-s − 130.·7-s − 71.3·8-s + 329.·9-s − 28.4·10-s − 121·11-s − 734.·12-s − 1.04e3·13-s − 148.·14-s − 598.·15-s + 901.·16-s + 991.·17-s + 375.·18-s + 361·19-s + 767.·20-s − 3.11e3·21-s − 137.·22-s + 1.54e3·23-s − 1.70e3·24-s + 625·25-s − 1.18e3·26-s + 2.07e3·27-s + 4.00e3·28-s + ⋯
L(s)  = 1  + 0.201·2-s + 1.53·3-s − 0.959·4-s − 0.447·5-s + 0.308·6-s − 1.00·7-s − 0.393·8-s + 1.35·9-s − 0.0899·10-s − 0.301·11-s − 1.47·12-s − 1.70·13-s − 0.202·14-s − 0.686·15-s + 0.880·16-s + 0.832·17-s + 0.272·18-s + 0.229·19-s + 0.429·20-s − 1.54·21-s − 0.0606·22-s + 0.609·23-s − 0.604·24-s + 0.200·25-s − 0.343·26-s + 0.548·27-s + 0.964·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.653756340\)
\(L(\frac12)\) \(\approx\) \(1.653756340\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 1.13T + 32T^{2} \)
3 \( 1 - 23.9T + 243T^{2} \)
7 \( 1 + 130.T + 1.68e4T^{2} \)
13 \( 1 + 1.04e3T + 3.71e5T^{2} \)
17 \( 1 - 991.T + 1.41e6T^{2} \)
23 \( 1 - 1.54e3T + 6.43e6T^{2} \)
29 \( 1 + 7.66e3T + 2.05e7T^{2} \)
31 \( 1 - 2.18e3T + 2.86e7T^{2} \)
37 \( 1 + 9.05e3T + 6.93e7T^{2} \)
41 \( 1 + 1.98e4T + 1.15e8T^{2} \)
43 \( 1 + 4.58e3T + 1.47e8T^{2} \)
47 \( 1 - 1.74e4T + 2.29e8T^{2} \)
53 \( 1 - 3.01e4T + 4.18e8T^{2} \)
59 \( 1 - 5.27e3T + 7.14e8T^{2} \)
61 \( 1 + 2.45e4T + 8.44e8T^{2} \)
67 \( 1 - 3.30e4T + 1.35e9T^{2} \)
71 \( 1 + 1.97e4T + 1.80e9T^{2} \)
73 \( 1 - 1.89e4T + 2.07e9T^{2} \)
79 \( 1 - 2.74e4T + 3.07e9T^{2} \)
83 \( 1 - 6.12e3T + 3.93e9T^{2} \)
89 \( 1 - 8.26e4T + 5.58e9T^{2} \)
97 \( 1 - 6.53e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.179619357333703327943103000553, −8.478762857581399993662726648542, −7.59908323334160456270654078965, −7.07432519037040117492759335230, −5.53703794532007821153640604447, −4.69296931418581374490566205641, −3.51642121597650399832243280657, −3.24673642211687873131066202192, −2.11846432738187000667294125787, −0.47758213142494842759621590901, 0.47758213142494842759621590901, 2.11846432738187000667294125787, 3.24673642211687873131066202192, 3.51642121597650399832243280657, 4.69296931418581374490566205641, 5.53703794532007821153640604447, 7.07432519037040117492759335230, 7.59908323334160456270654078965, 8.478762857581399993662726648542, 9.179619357333703327943103000553

Graph of the $Z$-function along the critical line