Properties

Label 2-1045-1.1-c5-0-107
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.832·2-s − 19.4·3-s − 31.3·4-s − 25·5-s − 16.2·6-s + 142.·7-s − 52.6·8-s + 136.·9-s − 20.8·10-s − 121·11-s + 610.·12-s + 1.03e3·13-s + 118.·14-s + 487.·15-s + 958.·16-s + 273.·17-s + 113.·18-s + 361·19-s + 782.·20-s − 2.77e3·21-s − 100.·22-s + 1.67e3·23-s + 1.02e3·24-s + 625·25-s + 860.·26-s + 2.07e3·27-s − 4.46e3·28-s + ⋯
L(s)  = 1  + 0.147·2-s − 1.25·3-s − 0.978·4-s − 0.447·5-s − 0.183·6-s + 1.10·7-s − 0.291·8-s + 0.562·9-s − 0.0657·10-s − 0.301·11-s + 1.22·12-s + 1.69·13-s + 0.161·14-s + 0.559·15-s + 0.935·16-s + 0.229·17-s + 0.0827·18-s + 0.229·19-s + 0.437·20-s − 1.37·21-s − 0.0443·22-s + 0.660·23-s + 0.363·24-s + 0.200·25-s + 0.249·26-s + 0.546·27-s − 1.07·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.426395995\)
\(L(\frac12)\) \(\approx\) \(1.426395995\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 - 0.832T + 32T^{2} \)
3 \( 1 + 19.4T + 243T^{2} \)
7 \( 1 - 142.T + 1.68e4T^{2} \)
13 \( 1 - 1.03e3T + 3.71e5T^{2} \)
17 \( 1 - 273.T + 1.41e6T^{2} \)
23 \( 1 - 1.67e3T + 6.43e6T^{2} \)
29 \( 1 - 7.56e3T + 2.05e7T^{2} \)
31 \( 1 - 1.99e3T + 2.86e7T^{2} \)
37 \( 1 + 338.T + 6.93e7T^{2} \)
41 \( 1 + 4.41e3T + 1.15e8T^{2} \)
43 \( 1 - 1.95e4T + 1.47e8T^{2} \)
47 \( 1 - 9.83e3T + 2.29e8T^{2} \)
53 \( 1 - 1.34e3T + 4.18e8T^{2} \)
59 \( 1 + 2.91e4T + 7.14e8T^{2} \)
61 \( 1 + 1.01e4T + 8.44e8T^{2} \)
67 \( 1 + 2.18e4T + 1.35e9T^{2} \)
71 \( 1 + 2.03e4T + 1.80e9T^{2} \)
73 \( 1 - 3.27e4T + 2.07e9T^{2} \)
79 \( 1 + 4.62e4T + 3.07e9T^{2} \)
83 \( 1 + 3.82e4T + 3.93e9T^{2} \)
89 \( 1 - 1.08e5T + 5.58e9T^{2} \)
97 \( 1 - 5.43e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983898077253160075326718042894, −8.421630401982005688950604991823, −7.63183984525685287171743674821, −6.36336297231593299860523042496, −5.65881642047701206428007041021, −4.85204368469403070340678772140, −4.29003208186803830526553376428, −3.13217181480878796179461370794, −1.23205184042833501733445061023, −0.66383557065253364591912331025, 0.66383557065253364591912331025, 1.23205184042833501733445061023, 3.13217181480878796179461370794, 4.29003208186803830526553376428, 4.85204368469403070340678772140, 5.65881642047701206428007041021, 6.36336297231593299860523042496, 7.63183984525685287171743674821, 8.421630401982005688950604991823, 8.983898077253160075326718042894

Graph of the $Z$-function along the critical line