Properties

Label 2-1045-1.1-c5-0-151
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.00·2-s + 20.9·3-s − 30.9·4-s − 25·5-s − 20.9·6-s + 215.·7-s + 63.0·8-s + 194.·9-s + 25.0·10-s − 121·11-s − 648.·12-s + 358.·13-s − 215.·14-s − 522.·15-s + 928.·16-s + 493.·17-s − 194.·18-s + 361·19-s + 774.·20-s + 4.50e3·21-s + 121.·22-s + 4.06e3·23-s + 1.31e3·24-s + 625·25-s − 358.·26-s − 1.01e3·27-s − 6.67e3·28-s + ⋯
L(s)  = 1  − 0.176·2-s + 1.34·3-s − 0.968·4-s − 0.447·5-s − 0.237·6-s + 1.66·7-s + 0.348·8-s + 0.799·9-s + 0.0791·10-s − 0.301·11-s − 1.29·12-s + 0.587·13-s − 0.293·14-s − 0.599·15-s + 0.907·16-s + 0.413·17-s − 0.141·18-s + 0.229·19-s + 0.433·20-s + 2.22·21-s + 0.0533·22-s + 1.60·23-s + 0.467·24-s + 0.200·25-s − 0.104·26-s − 0.269·27-s − 1.60·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.492820753\)
\(L(\frac12)\) \(\approx\) \(3.492820753\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 1.00T + 32T^{2} \)
3 \( 1 - 20.9T + 243T^{2} \)
7 \( 1 - 215.T + 1.68e4T^{2} \)
13 \( 1 - 358.T + 3.71e5T^{2} \)
17 \( 1 - 493.T + 1.41e6T^{2} \)
23 \( 1 - 4.06e3T + 6.43e6T^{2} \)
29 \( 1 - 5.19e3T + 2.05e7T^{2} \)
31 \( 1 + 5.91e3T + 2.86e7T^{2} \)
37 \( 1 + 216.T + 6.93e7T^{2} \)
41 \( 1 - 1.37e3T + 1.15e8T^{2} \)
43 \( 1 + 9.47e3T + 1.47e8T^{2} \)
47 \( 1 + 7.23e3T + 2.29e8T^{2} \)
53 \( 1 - 6.82e3T + 4.18e8T^{2} \)
59 \( 1 + 2.22e4T + 7.14e8T^{2} \)
61 \( 1 - 3.88e4T + 8.44e8T^{2} \)
67 \( 1 - 3.43e4T + 1.35e9T^{2} \)
71 \( 1 - 7.97e3T + 1.80e9T^{2} \)
73 \( 1 + 1.38e4T + 2.07e9T^{2} \)
79 \( 1 - 6.76e4T + 3.07e9T^{2} \)
83 \( 1 + 6.34e4T + 3.93e9T^{2} \)
89 \( 1 + 4.08e4T + 5.58e9T^{2} \)
97 \( 1 + 4.19e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.859909417832128622314970538054, −8.405853223153962511870233780473, −7.929578332501481962870560090386, −7.14601691101553033240619774841, −5.40942580977686354030203830815, −4.75288665682391270777617921595, −3.84619474839713431632574236308, −2.99873821317279546671902106280, −1.71970326177562358864173103620, −0.840503953745633211165892675850, 0.840503953745633211165892675850, 1.71970326177562358864173103620, 2.99873821317279546671902106280, 3.84619474839713431632574236308, 4.75288665682391270777617921595, 5.40942580977686354030203830815, 7.14601691101553033240619774841, 7.929578332501481962870560090386, 8.405853223153962511870233780473, 8.859909417832128622314970538054

Graph of the $Z$-function along the critical line