Properties

Label 2-1045-1.1-c5-0-143
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.63·2-s + 28.9·3-s − 25.0·4-s − 25·5-s − 76.3·6-s − 13.2·7-s + 150.·8-s + 595.·9-s + 65.9·10-s − 121·11-s − 725.·12-s + 1.11e3·13-s + 34.9·14-s − 724.·15-s + 404.·16-s − 421.·17-s − 1.57e3·18-s + 361·19-s + 626.·20-s − 383.·21-s + 319.·22-s + 60.1·23-s + 4.35e3·24-s + 625·25-s − 2.94e3·26-s + 1.02e4·27-s + 331.·28-s + ⋯
L(s)  = 1  − 0.466·2-s + 1.85·3-s − 0.782·4-s − 0.447·5-s − 0.866·6-s − 0.102·7-s + 0.831·8-s + 2.45·9-s + 0.208·10-s − 0.301·11-s − 1.45·12-s + 1.83·13-s + 0.0476·14-s − 0.830·15-s + 0.395·16-s − 0.353·17-s − 1.14·18-s + 0.229·19-s + 0.349·20-s − 0.189·21-s + 0.140·22-s + 0.0237·23-s + 1.54·24-s + 0.200·25-s − 0.854·26-s + 2.69·27-s + 0.0799·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.206156551\)
\(L(\frac12)\) \(\approx\) \(3.206156551\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 2.63T + 32T^{2} \)
3 \( 1 - 28.9T + 243T^{2} \)
7 \( 1 + 13.2T + 1.68e4T^{2} \)
13 \( 1 - 1.11e3T + 3.71e5T^{2} \)
17 \( 1 + 421.T + 1.41e6T^{2} \)
23 \( 1 - 60.1T + 6.43e6T^{2} \)
29 \( 1 + 7.78e3T + 2.05e7T^{2} \)
31 \( 1 - 1.23e3T + 2.86e7T^{2} \)
37 \( 1 - 4.73e3T + 6.93e7T^{2} \)
41 \( 1 - 1.45e4T + 1.15e8T^{2} \)
43 \( 1 - 2.35e4T + 1.47e8T^{2} \)
47 \( 1 + 2.03e4T + 2.29e8T^{2} \)
53 \( 1 - 3.53e4T + 4.18e8T^{2} \)
59 \( 1 - 3.88e4T + 7.14e8T^{2} \)
61 \( 1 - 1.98e3T + 8.44e8T^{2} \)
67 \( 1 + 3.52e4T + 1.35e9T^{2} \)
71 \( 1 + 2.34e4T + 1.80e9T^{2} \)
73 \( 1 + 8.40e4T + 2.07e9T^{2} \)
79 \( 1 + 8.27e4T + 3.07e9T^{2} \)
83 \( 1 - 1.11e5T + 3.93e9T^{2} \)
89 \( 1 - 4.25e3T + 5.58e9T^{2} \)
97 \( 1 + 1.00e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.990266771844548977284716245462, −8.522016344636053588866830753214, −7.82672536871270566377660980943, −7.21782927900963328237987853121, −5.80389736782926796449629396944, −4.31555761490389193920334554130, −3.87012137084865997553035094815, −2.99168607602894920587464077324, −1.76268354382011779957743024456, −0.803671475967798911230307197822, 0.803671475967798911230307197822, 1.76268354382011779957743024456, 2.99168607602894920587464077324, 3.87012137084865997553035094815, 4.31555761490389193920334554130, 5.80389736782926796449629396944, 7.21782927900963328237987853121, 7.82672536871270566377660980943, 8.522016344636053588866830753214, 8.990266771844548977284716245462

Graph of the $Z$-function along the critical line