Properties

Label 2-1045-1.1-c5-0-52
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.61·2-s + 9.41·3-s + 11.7·4-s − 25·5-s − 62.2·6-s − 82.7·7-s + 133.·8-s − 154.·9-s + 165.·10-s − 121·11-s + 110.·12-s + 261.·13-s + 547.·14-s − 235.·15-s − 1.26e3·16-s + 1.32e3·17-s + 1.02e3·18-s + 361·19-s − 294.·20-s − 778.·21-s + 800.·22-s + 3.17e3·23-s + 1.25e3·24-s + 625·25-s − 1.72e3·26-s − 3.74e3·27-s − 974.·28-s + ⋯
L(s)  = 1  − 1.16·2-s + 0.603·3-s + 0.367·4-s − 0.447·5-s − 0.706·6-s − 0.638·7-s + 0.739·8-s − 0.635·9-s + 0.523·10-s − 0.301·11-s + 0.222·12-s + 0.428·13-s + 0.746·14-s − 0.269·15-s − 1.23·16-s + 1.10·17-s + 0.743·18-s + 0.229·19-s − 0.164·20-s − 0.385·21-s + 0.352·22-s + 1.25·23-s + 0.446·24-s + 0.200·25-s − 0.501·26-s − 0.987·27-s − 0.234·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.7554693149\)
\(L(\frac12)\) \(\approx\) \(0.7554693149\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 + 121T \)
19 \( 1 - 361T \)
good2 \( 1 + 6.61T + 32T^{2} \)
3 \( 1 - 9.41T + 243T^{2} \)
7 \( 1 + 82.7T + 1.68e4T^{2} \)
13 \( 1 - 261.T + 3.71e5T^{2} \)
17 \( 1 - 1.32e3T + 1.41e6T^{2} \)
23 \( 1 - 3.17e3T + 6.43e6T^{2} \)
29 \( 1 + 105.T + 2.05e7T^{2} \)
31 \( 1 + 3.13e3T + 2.86e7T^{2} \)
37 \( 1 + 5.92e3T + 6.93e7T^{2} \)
41 \( 1 - 300.T + 1.15e8T^{2} \)
43 \( 1 - 2.18e4T + 1.47e8T^{2} \)
47 \( 1 + 1.63e4T + 2.29e8T^{2} \)
53 \( 1 + 1.93e4T + 4.18e8T^{2} \)
59 \( 1 + 4.06e4T + 7.14e8T^{2} \)
61 \( 1 + 2.54e4T + 8.44e8T^{2} \)
67 \( 1 - 9.61e3T + 1.35e9T^{2} \)
71 \( 1 + 4.84e4T + 1.80e9T^{2} \)
73 \( 1 - 8.72e4T + 2.07e9T^{2} \)
79 \( 1 + 3.60e4T + 3.07e9T^{2} \)
83 \( 1 - 4.19e4T + 3.93e9T^{2} \)
89 \( 1 + 1.00e5T + 5.58e9T^{2} \)
97 \( 1 - 2.41e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.224110632175494565355238405930, −8.414267405294266775023910888297, −7.79812035235985219231520261591, −7.10649122570453717691011904488, −5.93517033467450980131942060660, −4.85149784834598250110551398165, −3.55924731497341462342547421921, −2.88284182702748829912859138506, −1.51847781102999373574868703602, −0.45281484649887713843065096908, 0.45281484649887713843065096908, 1.51847781102999373574868703602, 2.88284182702748829912859138506, 3.55924731497341462342547421921, 4.85149784834598250110551398165, 5.93517033467450980131942060660, 7.10649122570453717691011904488, 7.79812035235985219231520261591, 8.414267405294266775023910888297, 9.224110632175494565355238405930

Graph of the $Z$-function along the critical line