Properties

Label 2-1045-1.1-c5-0-265
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.7·2-s + 24.8·3-s + 84.1·4-s + 25·5-s + 267.·6-s − 58.6·7-s + 561.·8-s + 375.·9-s + 269.·10-s − 121·11-s + 2.09e3·12-s + 215.·13-s − 631.·14-s + 621.·15-s + 3.36e3·16-s + 1.59e3·17-s + 4.04e3·18-s − 361·19-s + 2.10e3·20-s − 1.45e3·21-s − 1.30e3·22-s − 344.·23-s + 1.39e4·24-s + 625·25-s + 2.32e3·26-s + 3.28e3·27-s − 4.93e3·28-s + ⋯
L(s)  = 1  + 1.90·2-s + 1.59·3-s + 2.62·4-s + 0.447·5-s + 3.03·6-s − 0.452·7-s + 3.10·8-s + 1.54·9-s + 0.851·10-s − 0.301·11-s + 4.19·12-s + 0.354·13-s − 0.861·14-s + 0.713·15-s + 3.28·16-s + 1.33·17-s + 2.94·18-s − 0.229·19-s + 1.17·20-s − 0.721·21-s − 0.574·22-s − 0.135·23-s + 4.95·24-s + 0.200·25-s + 0.674·26-s + 0.867·27-s − 1.18·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(17.30129581\)
\(L(\frac12)\) \(\approx\) \(17.30129581\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 10.7T + 32T^{2} \)
3 \( 1 - 24.8T + 243T^{2} \)
7 \( 1 + 58.6T + 1.68e4T^{2} \)
13 \( 1 - 215.T + 3.71e5T^{2} \)
17 \( 1 - 1.59e3T + 1.41e6T^{2} \)
23 \( 1 + 344.T + 6.43e6T^{2} \)
29 \( 1 + 6.00e3T + 2.05e7T^{2} \)
31 \( 1 + 94.4T + 2.86e7T^{2} \)
37 \( 1 - 1.65e4T + 6.93e7T^{2} \)
41 \( 1 + 1.22e4T + 1.15e8T^{2} \)
43 \( 1 - 4.25e3T + 1.47e8T^{2} \)
47 \( 1 + 6.84e3T + 2.29e8T^{2} \)
53 \( 1 + 468.T + 4.18e8T^{2} \)
59 \( 1 + 1.99e4T + 7.14e8T^{2} \)
61 \( 1 + 3.99e4T + 8.44e8T^{2} \)
67 \( 1 - 1.52e4T + 1.35e9T^{2} \)
71 \( 1 + 1.61e4T + 1.80e9T^{2} \)
73 \( 1 - 9.49e3T + 2.07e9T^{2} \)
79 \( 1 - 3.03e4T + 3.07e9T^{2} \)
83 \( 1 + 2.30e4T + 3.93e9T^{2} \)
89 \( 1 - 1.25e5T + 5.58e9T^{2} \)
97 \( 1 - 9.64e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.274409019089702409210653990515, −7.992802850749585401177897950515, −7.50038557053088698317199072346, −6.41745593359111802165632724190, −5.69430426801379486305243036186, −4.65633270310963215780296458400, −3.64292660281570408149487134894, −3.17337350611580256791052922639, −2.34370090064071849707910648459, −1.47783464239398829414047436837, 1.47783464239398829414047436837, 2.34370090064071849707910648459, 3.17337350611580256791052922639, 3.64292660281570408149487134894, 4.65633270310963215780296458400, 5.69430426801379486305243036186, 6.41745593359111802165632724190, 7.50038557053088698317199072346, 7.992802850749585401177897950515, 9.274409019089702409210653990515

Graph of the $Z$-function along the critical line