Properties

Label 2-1045-1.1-c5-0-77
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.72·2-s − 28.3·3-s + 0.821·4-s + 25·5-s − 162.·6-s + 40.2·7-s − 178.·8-s + 562.·9-s + 143.·10-s − 121·11-s − 23.3·12-s + 859.·13-s + 230.·14-s − 709.·15-s − 1.04e3·16-s − 172.·17-s + 3.22e3·18-s − 361·19-s + 20.5·20-s − 1.14e3·21-s − 693.·22-s + 3.60e3·23-s + 5.06e3·24-s + 625·25-s + 4.92e3·26-s − 9.06e3·27-s + 33.0·28-s + ⋯
L(s)  = 1  + 1.01·2-s − 1.82·3-s + 0.0256·4-s + 0.447·5-s − 1.84·6-s + 0.310·7-s − 0.986·8-s + 2.31·9-s + 0.452·10-s − 0.301·11-s − 0.0467·12-s + 1.41·13-s + 0.314·14-s − 0.814·15-s − 1.02·16-s − 0.144·17-s + 2.34·18-s − 0.229·19-s + 0.0114·20-s − 0.565·21-s − 0.305·22-s + 1.42·23-s + 1.79·24-s + 0.200·25-s + 1.42·26-s − 2.39·27-s + 0.00797·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.783132600\)
\(L(\frac12)\) \(\approx\) \(1.783132600\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 5.72T + 32T^{2} \)
3 \( 1 + 28.3T + 243T^{2} \)
7 \( 1 - 40.2T + 1.68e4T^{2} \)
13 \( 1 - 859.T + 3.71e5T^{2} \)
17 \( 1 + 172.T + 1.41e6T^{2} \)
23 \( 1 - 3.60e3T + 6.43e6T^{2} \)
29 \( 1 - 329.T + 2.05e7T^{2} \)
31 \( 1 - 2.34e3T + 2.86e7T^{2} \)
37 \( 1 + 1.25e4T + 6.93e7T^{2} \)
41 \( 1 - 8.47e3T + 1.15e8T^{2} \)
43 \( 1 + 4.43e3T + 1.47e8T^{2} \)
47 \( 1 + 15.6T + 2.29e8T^{2} \)
53 \( 1 + 2.58e4T + 4.18e8T^{2} \)
59 \( 1 + 4.17e3T + 7.14e8T^{2} \)
61 \( 1 + 1.80e4T + 8.44e8T^{2} \)
67 \( 1 - 4.88e4T + 1.35e9T^{2} \)
71 \( 1 - 1.20e4T + 1.80e9T^{2} \)
73 \( 1 - 2.16e4T + 2.07e9T^{2} \)
79 \( 1 + 1.00e4T + 3.07e9T^{2} \)
83 \( 1 + 1.04e5T + 3.93e9T^{2} \)
89 \( 1 + 7.87e4T + 5.58e9T^{2} \)
97 \( 1 + 6.44e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.339381979793178948483976685945, −8.374483456371719088336514104027, −6.93055284227784960846634610887, −6.32452822322735056360543357095, −5.62535326265940798167728872025, −5.01471338303231266494935805271, −4.32875145166707236094503536211, −3.22360082792140473452856489657, −1.57692475546630677689059026239, −0.57380112048069305033590989428, 0.57380112048069305033590989428, 1.57692475546630677689059026239, 3.22360082792140473452856489657, 4.32875145166707236094503536211, 5.01471338303231266494935805271, 5.62535326265940798167728872025, 6.32452822322735056360543357095, 6.93055284227784960846634610887, 8.374483456371719088336514104027, 9.339381979793178948483976685945

Graph of the $Z$-function along the critical line