Properties

Label 2-1045-1.1-c5-0-37
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.01·2-s − 7.14·3-s − 6.85·4-s + 25·5-s − 35.8·6-s − 38.8·7-s − 194.·8-s − 191.·9-s + 125.·10-s − 121·11-s + 48.9·12-s − 458.·13-s − 194.·14-s − 178.·15-s − 757.·16-s + 2.12e3·17-s − 962.·18-s − 361·19-s − 171.·20-s + 277.·21-s − 606.·22-s − 4.77e3·23-s + 1.39e3·24-s + 625·25-s − 2.29e3·26-s + 3.10e3·27-s + 266.·28-s + ⋯
L(s)  = 1  + 0.886·2-s − 0.458·3-s − 0.214·4-s + 0.447·5-s − 0.406·6-s − 0.299·7-s − 1.07·8-s − 0.789·9-s + 0.396·10-s − 0.301·11-s + 0.0981·12-s − 0.752·13-s − 0.265·14-s − 0.205·15-s − 0.739·16-s + 1.78·17-s − 0.700·18-s − 0.229·19-s − 0.0957·20-s + 0.137·21-s − 0.267·22-s − 1.88·23-s + 0.493·24-s + 0.200·25-s − 0.666·26-s + 0.820·27-s + 0.0641·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.013973637\)
\(L(\frac12)\) \(\approx\) \(1.013973637\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 5.01T + 32T^{2} \)
3 \( 1 + 7.14T + 243T^{2} \)
7 \( 1 + 38.8T + 1.68e4T^{2} \)
13 \( 1 + 458.T + 3.71e5T^{2} \)
17 \( 1 - 2.12e3T + 1.41e6T^{2} \)
23 \( 1 + 4.77e3T + 6.43e6T^{2} \)
29 \( 1 + 7.77e3T + 2.05e7T^{2} \)
31 \( 1 + 7.11e3T + 2.86e7T^{2} \)
37 \( 1 + 1.89e3T + 6.93e7T^{2} \)
41 \( 1 - 9.53e3T + 1.15e8T^{2} \)
43 \( 1 + 3.96e3T + 1.47e8T^{2} \)
47 \( 1 - 6.82e3T + 2.29e8T^{2} \)
53 \( 1 + 2.92e4T + 4.18e8T^{2} \)
59 \( 1 - 3.49e4T + 7.14e8T^{2} \)
61 \( 1 - 2.02e4T + 8.44e8T^{2} \)
67 \( 1 + 9.46e3T + 1.35e9T^{2} \)
71 \( 1 + 2.95e4T + 1.80e9T^{2} \)
73 \( 1 + 2.75e3T + 2.07e9T^{2} \)
79 \( 1 - 4.86e4T + 3.07e9T^{2} \)
83 \( 1 - 2.83e4T + 3.93e9T^{2} \)
89 \( 1 - 2.94e4T + 5.58e9T^{2} \)
97 \( 1 + 7.73e3T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.435653758503458343814949330726, −8.313123193795644875738658967970, −7.45291456034191113501459931473, −6.16756401204968488630116564535, −5.64306639041247511669808726105, −5.13433582904861471283867980000, −3.90919339372741017093066275164, −3.13057020401590131699528925889, −2.01653407749750773105053208945, −0.36853844690110670900826192042, 0.36853844690110670900826192042, 2.01653407749750773105053208945, 3.13057020401590131699528925889, 3.90919339372741017093066275164, 5.13433582904861471283867980000, 5.64306639041247511669808726105, 6.16756401204968488630116564535, 7.45291456034191113501459931473, 8.313123193795644875738658967970, 9.435653758503458343814949330726

Graph of the $Z$-function along the critical line