Properties

Label 2-1045-1.1-c5-0-126
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.86·2-s + 9.18·3-s − 17.0·4-s + 25·5-s + 35.5·6-s + 171.·7-s − 189.·8-s − 158.·9-s + 96.7·10-s − 121·11-s − 156.·12-s + 17.0·13-s + 664.·14-s + 229.·15-s − 189.·16-s + 841.·17-s − 614.·18-s − 361·19-s − 425.·20-s + 1.57e3·21-s − 468.·22-s − 2.88e3·23-s − 1.74e3·24-s + 625·25-s + 65.8·26-s − 3.68e3·27-s − 2.92e3·28-s + ⋯
L(s)  = 1  + 0.684·2-s + 0.589·3-s − 0.531·4-s + 0.447·5-s + 0.403·6-s + 1.32·7-s − 1.04·8-s − 0.652·9-s + 0.305·10-s − 0.301·11-s − 0.313·12-s + 0.0279·13-s + 0.905·14-s + 0.263·15-s − 0.185·16-s + 0.706·17-s − 0.446·18-s − 0.229·19-s − 0.237·20-s + 0.780·21-s − 0.206·22-s − 1.13·23-s − 0.617·24-s + 0.200·25-s + 0.0191·26-s − 0.973·27-s − 0.704·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.861392830\)
\(L(\frac12)\) \(\approx\) \(3.861392830\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 3.86T + 32T^{2} \)
3 \( 1 - 9.18T + 243T^{2} \)
7 \( 1 - 171.T + 1.68e4T^{2} \)
13 \( 1 - 17.0T + 3.71e5T^{2} \)
17 \( 1 - 841.T + 1.41e6T^{2} \)
23 \( 1 + 2.88e3T + 6.43e6T^{2} \)
29 \( 1 - 5.47e3T + 2.05e7T^{2} \)
31 \( 1 - 5.05e3T + 2.86e7T^{2} \)
37 \( 1 - 5.21e3T + 6.93e7T^{2} \)
41 \( 1 + 1.21e4T + 1.15e8T^{2} \)
43 \( 1 + 1.13e3T + 1.47e8T^{2} \)
47 \( 1 - 1.12e4T + 2.29e8T^{2} \)
53 \( 1 - 3.61e4T + 4.18e8T^{2} \)
59 \( 1 + 1.13e4T + 7.14e8T^{2} \)
61 \( 1 + 4.26e4T + 8.44e8T^{2} \)
67 \( 1 - 2.57e4T + 1.35e9T^{2} \)
71 \( 1 - 1.16e4T + 1.80e9T^{2} \)
73 \( 1 - 6.17e4T + 2.07e9T^{2} \)
79 \( 1 - 4.81e4T + 3.07e9T^{2} \)
83 \( 1 - 3.79e4T + 3.93e9T^{2} \)
89 \( 1 - 1.02e5T + 5.58e9T^{2} \)
97 \( 1 - 1.18e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.050876041094617144710892957349, −8.243079938780561111389690008421, −7.929425077951929177198471559501, −6.39413721173795172706963257525, −5.53733062809157134877391618991, −4.88682667260350570418274132964, −3.99132867319619656845945800327, −2.94159231622159972177155262026, −2.05802707978185215488802371733, −0.74564046927754514556724729276, 0.74564046927754514556724729276, 2.05802707978185215488802371733, 2.94159231622159972177155262026, 3.99132867319619656845945800327, 4.88682667260350570418274132964, 5.53733062809157134877391618991, 6.39413721173795172706963257525, 7.929425077951929177198471559501, 8.243079938780561111389690008421, 9.050876041094617144710892957349

Graph of the $Z$-function along the critical line