Properties

Label 2-1045-1.1-c5-0-202
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.51·2-s + 27.4·3-s − 25.6·4-s + 25·5-s + 69.1·6-s + 151.·7-s − 145.·8-s + 511.·9-s + 62.9·10-s − 121·11-s − 704.·12-s + 608.·13-s + 382.·14-s + 686.·15-s + 456.·16-s + 578.·17-s + 1.28e3·18-s − 361·19-s − 641.·20-s + 4.17e3·21-s − 304.·22-s + 4.86e3·23-s − 3.98e3·24-s + 625·25-s + 1.53e3·26-s + 7.36e3·27-s − 3.90e3·28-s + ⋯
L(s)  = 1  + 0.444·2-s + 1.76·3-s − 0.802·4-s + 0.447·5-s + 0.783·6-s + 1.17·7-s − 0.801·8-s + 2.10·9-s + 0.198·10-s − 0.301·11-s − 1.41·12-s + 0.999·13-s + 0.521·14-s + 0.787·15-s + 0.445·16-s + 0.485·17-s + 0.935·18-s − 0.229·19-s − 0.358·20-s + 2.06·21-s − 0.134·22-s + 1.91·23-s − 1.41·24-s + 0.200·25-s + 0.444·26-s + 1.94·27-s − 0.940·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(6.787734900\)
\(L(\frac12)\) \(\approx\) \(6.787734900\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 2.51T + 32T^{2} \)
3 \( 1 - 27.4T + 243T^{2} \)
7 \( 1 - 151.T + 1.68e4T^{2} \)
13 \( 1 - 608.T + 3.71e5T^{2} \)
17 \( 1 - 578.T + 1.41e6T^{2} \)
23 \( 1 - 4.86e3T + 6.43e6T^{2} \)
29 \( 1 + 5.44e3T + 2.05e7T^{2} \)
31 \( 1 - 2.97e3T + 2.86e7T^{2} \)
37 \( 1 + 6.78e3T + 6.93e7T^{2} \)
41 \( 1 + 6.98e3T + 1.15e8T^{2} \)
43 \( 1 + 1.00e4T + 1.47e8T^{2} \)
47 \( 1 + 938.T + 2.29e8T^{2} \)
53 \( 1 + 8.12e3T + 4.18e8T^{2} \)
59 \( 1 - 2.90e4T + 7.14e8T^{2} \)
61 \( 1 - 1.80e4T + 8.44e8T^{2} \)
67 \( 1 - 2.74e4T + 1.35e9T^{2} \)
71 \( 1 + 3.70e4T + 1.80e9T^{2} \)
73 \( 1 - 3.98e4T + 2.07e9T^{2} \)
79 \( 1 - 4.93e3T + 3.07e9T^{2} \)
83 \( 1 - 6.22e4T + 3.93e9T^{2} \)
89 \( 1 + 9.48e4T + 5.58e9T^{2} \)
97 \( 1 - 1.06e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.948304958475819337690244481583, −8.489043892374988528539767447450, −7.88084871560646261363570841150, −6.83517554045340190933386042050, −5.43526284393825709446600849299, −4.74978473168209362330507003779, −3.73265432260718308552663489705, −3.08868054547954536243851339697, −1.93838005673619663931247845513, −1.06181689878795972809405982566, 1.06181689878795972809405982566, 1.93838005673619663931247845513, 3.08868054547954536243851339697, 3.73265432260718308552663489705, 4.74978473168209362330507003779, 5.43526284393825709446600849299, 6.83517554045340190933386042050, 7.88084871560646261363570841150, 8.489043892374988528539767447450, 8.948304958475819337690244481583

Graph of the $Z$-function along the critical line