Properties

Label 2-1045-1.1-c5-0-85
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.806·2-s + 22.8·3-s − 31.3·4-s + 25·5-s − 18.4·6-s − 91.7·7-s + 51.0·8-s + 281.·9-s − 20.1·10-s − 121·11-s − 717.·12-s − 55.9·13-s + 73.9·14-s + 572.·15-s + 961.·16-s − 1.87e3·17-s − 226.·18-s − 361·19-s − 783.·20-s − 2.10e3·21-s + 97.5·22-s − 3.67e3·23-s + 1.16e3·24-s + 625·25-s + 45.1·26-s + 878.·27-s + 2.87e3·28-s + ⋯
L(s)  = 1  − 0.142·2-s + 1.46·3-s − 0.979·4-s + 0.447·5-s − 0.209·6-s − 0.707·7-s + 0.282·8-s + 1.15·9-s − 0.0637·10-s − 0.301·11-s − 1.43·12-s − 0.0918·13-s + 0.100·14-s + 0.656·15-s + 0.939·16-s − 1.57·17-s − 0.165·18-s − 0.229·19-s − 0.438·20-s − 1.03·21-s + 0.0429·22-s − 1.44·23-s + 0.414·24-s + 0.200·25-s + 0.0130·26-s + 0.231·27-s + 0.693·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(2.238991265\)
\(L(\frac12)\) \(\approx\) \(2.238991265\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 0.806T + 32T^{2} \)
3 \( 1 - 22.8T + 243T^{2} \)
7 \( 1 + 91.7T + 1.68e4T^{2} \)
13 \( 1 + 55.9T + 3.71e5T^{2} \)
17 \( 1 + 1.87e3T + 1.41e6T^{2} \)
23 \( 1 + 3.67e3T + 6.43e6T^{2} \)
29 \( 1 - 1.52e3T + 2.05e7T^{2} \)
31 \( 1 - 6.38e3T + 2.86e7T^{2} \)
37 \( 1 - 1.58e4T + 6.93e7T^{2} \)
41 \( 1 - 7.93e3T + 1.15e8T^{2} \)
43 \( 1 + 1.96e4T + 1.47e8T^{2} \)
47 \( 1 - 1.50e4T + 2.29e8T^{2} \)
53 \( 1 - 3.17e4T + 4.18e8T^{2} \)
59 \( 1 - 2.09e4T + 7.14e8T^{2} \)
61 \( 1 - 5.13e4T + 8.44e8T^{2} \)
67 \( 1 - 2.06e3T + 1.35e9T^{2} \)
71 \( 1 + 4.37e3T + 1.80e9T^{2} \)
73 \( 1 + 5.57e4T + 2.07e9T^{2} \)
79 \( 1 - 5.34e4T + 3.07e9T^{2} \)
83 \( 1 - 7.17e3T + 3.93e9T^{2} \)
89 \( 1 + 1.16e5T + 5.58e9T^{2} \)
97 \( 1 - 7.26e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.095309882480642060191126387802, −8.493968655974191089918066310776, −7.911284389925722810713817043593, −6.78011350970590609358339443365, −5.82493676891940974160592614448, −4.51461391613651526342541428907, −3.90472194320984973036052094834, −2.78462845702615420619866185189, −2.07995542948679057062331400080, −0.59690484692879169408406657999, 0.59690484692879169408406657999, 2.07995542948679057062331400080, 2.78462845702615420619866185189, 3.90472194320984973036052094834, 4.51461391613651526342541428907, 5.82493676891940974160592614448, 6.78011350970590609358339443365, 7.911284389925722810713817043593, 8.493968655974191089918066310776, 9.095309882480642060191126387802

Graph of the $Z$-function along the critical line