Properties

Label 2-1045-1.1-c5-0-23
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.29·2-s − 17.4·3-s − 26.7·4-s + 25·5-s + 40.0·6-s − 42.9·7-s + 134.·8-s + 61.1·9-s − 57.4·10-s − 121·11-s + 466.·12-s + 174.·13-s + 98.5·14-s − 436.·15-s + 545.·16-s − 2.22e3·17-s − 140.·18-s − 361·19-s − 668.·20-s + 748.·21-s + 277.·22-s + 406.·23-s − 2.35e3·24-s + 625·25-s − 400.·26-s + 3.17e3·27-s + 1.14e3·28-s + ⋯
L(s)  = 1  − 0.405·2-s − 1.11·3-s − 0.835·4-s + 0.447·5-s + 0.454·6-s − 0.331·7-s + 0.744·8-s + 0.251·9-s − 0.181·10-s − 0.301·11-s + 0.934·12-s + 0.286·13-s + 0.134·14-s − 0.500·15-s + 0.532·16-s − 1.86·17-s − 0.102·18-s − 0.229·19-s − 0.373·20-s + 0.370·21-s + 0.122·22-s + 0.160·23-s − 0.833·24-s + 0.200·25-s − 0.116·26-s + 0.837·27-s + 0.276·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.2966249590\)
\(L(\frac12)\) \(\approx\) \(0.2966249590\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 2.29T + 32T^{2} \)
3 \( 1 + 17.4T + 243T^{2} \)
7 \( 1 + 42.9T + 1.68e4T^{2} \)
13 \( 1 - 174.T + 3.71e5T^{2} \)
17 \( 1 + 2.22e3T + 1.41e6T^{2} \)
23 \( 1 - 406.T + 6.43e6T^{2} \)
29 \( 1 - 4.55e3T + 2.05e7T^{2} \)
31 \( 1 + 1.87e3T + 2.86e7T^{2} \)
37 \( 1 + 4.08e3T + 6.93e7T^{2} \)
41 \( 1 - 2.91e3T + 1.15e8T^{2} \)
43 \( 1 - 2.00e4T + 1.47e8T^{2} \)
47 \( 1 - 9.67e3T + 2.29e8T^{2} \)
53 \( 1 + 1.78e4T + 4.18e8T^{2} \)
59 \( 1 + 3.98e4T + 7.14e8T^{2} \)
61 \( 1 + 1.54e4T + 8.44e8T^{2} \)
67 \( 1 + 3.25e4T + 1.35e9T^{2} \)
71 \( 1 + 1.06e4T + 1.80e9T^{2} \)
73 \( 1 + 3.89e4T + 2.07e9T^{2} \)
79 \( 1 + 7.21e4T + 3.07e9T^{2} \)
83 \( 1 + 8.75e4T + 3.93e9T^{2} \)
89 \( 1 - 1.59e4T + 5.58e9T^{2} \)
97 \( 1 - 5.29e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.070653854472226797355222165558, −8.690463878679771560558912451165, −7.48876117392685560405928983596, −6.46554570787000411390641947411, −5.86039568149716441091631179353, −4.86747510316278942801341697117, −4.27607777913078393479334252727, −2.79059997951998646682803974654, −1.41907473269842829713991416804, −0.28326593331393691579797179135, 0.28326593331393691579797179135, 1.41907473269842829713991416804, 2.79059997951998646682803974654, 4.27607777913078393479334252727, 4.86747510316278942801341697117, 5.86039568149716441091631179353, 6.46554570787000411390641947411, 7.48876117392685560405928983596, 8.690463878679771560558912451165, 9.070653854472226797355222165558

Graph of the $Z$-function along the critical line