Properties

Label 2-1045-1.1-c5-0-123
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.07·2-s − 6.58·3-s − 15.3·4-s + 25·5-s + 26.8·6-s + 210.·7-s + 193.·8-s − 199.·9-s − 101.·10-s − 121·11-s + 101.·12-s + 824.·13-s − 856.·14-s − 164.·15-s − 296.·16-s − 522.·17-s + 814.·18-s − 361·19-s − 383.·20-s − 1.38e3·21-s + 493.·22-s + 2.47e3·23-s − 1.27e3·24-s + 625·25-s − 3.36e3·26-s + 2.91e3·27-s − 3.22e3·28-s + ⋯
L(s)  = 1  − 0.721·2-s − 0.422·3-s − 0.479·4-s + 0.447·5-s + 0.304·6-s + 1.62·7-s + 1.06·8-s − 0.821·9-s − 0.322·10-s − 0.301·11-s + 0.202·12-s + 1.35·13-s − 1.16·14-s − 0.188·15-s − 0.289·16-s − 0.438·17-s + 0.592·18-s − 0.229·19-s − 0.214·20-s − 0.684·21-s + 0.217·22-s + 0.977·23-s − 0.450·24-s + 0.200·25-s − 0.975·26-s + 0.769·27-s − 0.777·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.658950004\)
\(L(\frac12)\) \(\approx\) \(1.658950004\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 4.07T + 32T^{2} \)
3 \( 1 + 6.58T + 243T^{2} \)
7 \( 1 - 210.T + 1.68e4T^{2} \)
13 \( 1 - 824.T + 3.71e5T^{2} \)
17 \( 1 + 522.T + 1.41e6T^{2} \)
23 \( 1 - 2.47e3T + 6.43e6T^{2} \)
29 \( 1 - 1.49e3T + 2.05e7T^{2} \)
31 \( 1 - 9.86e3T + 2.86e7T^{2} \)
37 \( 1 - 4.56e3T + 6.93e7T^{2} \)
41 \( 1 - 1.81e3T + 1.15e8T^{2} \)
43 \( 1 + 6.68e3T + 1.47e8T^{2} \)
47 \( 1 - 1.35e4T + 2.29e8T^{2} \)
53 \( 1 - 5.88e3T + 4.18e8T^{2} \)
59 \( 1 - 4.97e4T + 7.14e8T^{2} \)
61 \( 1 + 2.19e3T + 8.44e8T^{2} \)
67 \( 1 + 4.78e4T + 1.35e9T^{2} \)
71 \( 1 + 2.64e4T + 1.80e9T^{2} \)
73 \( 1 - 6.69e4T + 2.07e9T^{2} \)
79 \( 1 - 4.44e3T + 3.07e9T^{2} \)
83 \( 1 + 2.00e4T + 3.93e9T^{2} \)
89 \( 1 + 7.26e4T + 5.58e9T^{2} \)
97 \( 1 + 8.96e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.881274827062543284407339376140, −8.501811929674547397010407180713, −7.916032861515663224053315084846, −6.69937768269664399960432499872, −5.65704861928148236431755086676, −4.95583115290597589963031855615, −4.16997578243807034648707262124, −2.60830920507504715845098271497, −1.38621589059102934636977146574, −0.73163877509741579414023393630, 0.73163877509741579414023393630, 1.38621589059102934636977146574, 2.60830920507504715845098271497, 4.16997578243807034648707262124, 4.95583115290597589963031855615, 5.65704861928148236431755086676, 6.69937768269664399960432499872, 7.916032861515663224053315084846, 8.501811929674547397010407180713, 8.881274827062543284407339376140

Graph of the $Z$-function along the critical line