Properties

Label 2-1045-1.1-c5-0-259
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 10.7·2-s − 23.7·3-s + 84.0·4-s + 25·5-s − 255.·6-s − 188.·7-s + 560.·8-s + 321.·9-s + 269.·10-s + 121·11-s − 1.99e3·12-s + 270.·13-s − 2.03e3·14-s − 593.·15-s + 3.35e3·16-s − 1.87e3·17-s + 3.46e3·18-s − 361·19-s + 2.10e3·20-s + 4.47e3·21-s + 1.30e3·22-s + 3.79e3·23-s − 1.33e4·24-s + 625·25-s + 2.91e3·26-s − 1.86e3·27-s − 1.58e4·28-s + ⋯
L(s)  = 1  + 1.90·2-s − 1.52·3-s + 2.62·4-s + 0.447·5-s − 2.90·6-s − 1.45·7-s + 3.09·8-s + 1.32·9-s + 0.851·10-s + 0.301·11-s − 4.00·12-s + 0.444·13-s − 2.76·14-s − 0.681·15-s + 3.27·16-s − 1.57·17-s + 2.51·18-s − 0.229·19-s + 1.17·20-s + 2.21·21-s + 0.574·22-s + 1.49·23-s − 4.72·24-s + 0.200·25-s + 0.846·26-s − 0.491·27-s − 3.81·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 10.7T + 32T^{2} \)
3 \( 1 + 23.7T + 243T^{2} \)
7 \( 1 + 188.T + 1.68e4T^{2} \)
13 \( 1 - 270.T + 3.71e5T^{2} \)
17 \( 1 + 1.87e3T + 1.41e6T^{2} \)
23 \( 1 - 3.79e3T + 6.43e6T^{2} \)
29 \( 1 + 339.T + 2.05e7T^{2} \)
31 \( 1 - 6.42e3T + 2.86e7T^{2} \)
37 \( 1 + 1.19e4T + 6.93e7T^{2} \)
41 \( 1 + 9.11e3T + 1.15e8T^{2} \)
43 \( 1 + 1.84e4T + 1.47e8T^{2} \)
47 \( 1 + 7.34e3T + 2.29e8T^{2} \)
53 \( 1 - 2.11e4T + 4.18e8T^{2} \)
59 \( 1 + 3.18e4T + 7.14e8T^{2} \)
61 \( 1 + 1.16e4T + 8.44e8T^{2} \)
67 \( 1 + 3.42e4T + 1.35e9T^{2} \)
71 \( 1 - 6.42e4T + 1.80e9T^{2} \)
73 \( 1 + 2.84e4T + 2.07e9T^{2} \)
79 \( 1 + 3.52e4T + 3.07e9T^{2} \)
83 \( 1 + 4.74e4T + 3.93e9T^{2} \)
89 \( 1 - 1.09e5T + 5.58e9T^{2} \)
97 \( 1 - 6.55e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.877491390750793443771713048664, −6.99747197618452799751405701747, −6.54311154080014376892472452247, −6.25763653207404189173377392104, −5.25839837363714236637820251210, −4.67688838303514174642304653418, −3.63526094523554064343879129719, −2.73049621771098833770696207402, −1.42851139116213982277045355991, 0, 1.42851139116213982277045355991, 2.73049621771098833770696207402, 3.63526094523554064343879129719, 4.67688838303514174642304653418, 5.25839837363714236637820251210, 6.25763653207404189173377392104, 6.54311154080014376892472452247, 6.99747197618452799751405701747, 8.877491390750793443771713048664

Graph of the $Z$-function along the critical line