Properties

Label 2-1045-1.1-c5-0-297
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.76·2-s + 13.1·3-s + 63.4·4-s + 25·5-s + 128.·6-s − 183.·7-s + 307.·8-s − 69.0·9-s + 244.·10-s + 121·11-s + 836.·12-s − 1.05e3·13-s − 1.79e3·14-s + 329.·15-s + 971.·16-s + 1.31e3·17-s − 674.·18-s − 361·19-s + 1.58e3·20-s − 2.42e3·21-s + 1.18e3·22-s − 933.·23-s + 4.05e3·24-s + 625·25-s − 1.03e4·26-s − 4.11e3·27-s − 1.16e4·28-s + ⋯
L(s)  = 1  + 1.72·2-s + 0.846·3-s + 1.98·4-s + 0.447·5-s + 1.46·6-s − 1.41·7-s + 1.69·8-s − 0.284·9-s + 0.772·10-s + 0.301·11-s + 1.67·12-s − 1.73·13-s − 2.44·14-s + 0.378·15-s + 0.948·16-s + 1.10·17-s − 0.490·18-s − 0.229·19-s + 0.886·20-s − 1.19·21-s + 0.520·22-s − 0.367·23-s + 1.43·24-s + 0.200·25-s − 2.99·26-s − 1.08·27-s − 2.80·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 9.76T + 32T^{2} \)
3 \( 1 - 13.1T + 243T^{2} \)
7 \( 1 + 183.T + 1.68e4T^{2} \)
13 \( 1 + 1.05e3T + 3.71e5T^{2} \)
17 \( 1 - 1.31e3T + 1.41e6T^{2} \)
23 \( 1 + 933.T + 6.43e6T^{2} \)
29 \( 1 + 7.52e3T + 2.05e7T^{2} \)
31 \( 1 - 8.24e3T + 2.86e7T^{2} \)
37 \( 1 + 1.14e4T + 6.93e7T^{2} \)
41 \( 1 - 8.29e3T + 1.15e8T^{2} \)
43 \( 1 + 9.33e3T + 1.47e8T^{2} \)
47 \( 1 + 6.67e3T + 2.29e8T^{2} \)
53 \( 1 - 2.06e4T + 4.18e8T^{2} \)
59 \( 1 + 8.18e3T + 7.14e8T^{2} \)
61 \( 1 - 4.66e4T + 8.44e8T^{2} \)
67 \( 1 + 5.51e4T + 1.35e9T^{2} \)
71 \( 1 + 5.26e4T + 1.80e9T^{2} \)
73 \( 1 + 6.11e4T + 2.07e9T^{2} \)
79 \( 1 + 3.22e4T + 3.07e9T^{2} \)
83 \( 1 + 2.03e4T + 3.93e9T^{2} \)
89 \( 1 + 3.31e4T + 5.58e9T^{2} \)
97 \( 1 + 3.40e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.869471837533614017241731572460, −7.56747495144479031197406687481, −6.90014783341887960606926680944, −5.96290013982269411641387492706, −5.37522728258712977891416110039, −4.23728188737607614432544201986, −3.28879624377910779473134328872, −2.82725516316632600293109612006, −1.95782653981947694975152867942, 0, 1.95782653981947694975152867942, 2.82725516316632600293109612006, 3.28879624377910779473134328872, 4.23728188737607614432544201986, 5.37522728258712977891416110039, 5.96290013982269411641387492706, 6.90014783341887960606926680944, 7.56747495144479031197406687481, 8.869471837533614017241731572460

Graph of the $Z$-function along the critical line