Properties

Label 2-1045-1.1-c5-0-272
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.72·2-s + 3.49·3-s + 13.1·4-s + 25·5-s + 23.4·6-s + 48.1·7-s − 126.·8-s − 230.·9-s + 168.·10-s + 121·11-s + 46.0·12-s + 1.09e3·13-s + 323.·14-s + 87.3·15-s − 1.27e3·16-s − 1.25e3·17-s − 1.55e3·18-s − 361·19-s + 329.·20-s + 168.·21-s + 813.·22-s − 471.·23-s − 442.·24-s + 625·25-s + 7.34e3·26-s − 1.65e3·27-s + 634.·28-s + ⋯
L(s)  = 1  + 1.18·2-s + 0.224·3-s + 0.411·4-s + 0.447·5-s + 0.266·6-s + 0.371·7-s − 0.698·8-s − 0.949·9-s + 0.531·10-s + 0.301·11-s + 0.0923·12-s + 1.79·13-s + 0.440·14-s + 0.100·15-s − 1.24·16-s − 1.05·17-s − 1.12·18-s − 0.229·19-s + 0.184·20-s + 0.0832·21-s + 0.358·22-s − 0.185·23-s − 0.156·24-s + 0.200·25-s + 2.13·26-s − 0.437·27-s + 0.152·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 - 6.72T + 32T^{2} \)
3 \( 1 - 3.49T + 243T^{2} \)
7 \( 1 - 48.1T + 1.68e4T^{2} \)
13 \( 1 - 1.09e3T + 3.71e5T^{2} \)
17 \( 1 + 1.25e3T + 1.41e6T^{2} \)
23 \( 1 + 471.T + 6.43e6T^{2} \)
29 \( 1 + 7.96e3T + 2.05e7T^{2} \)
31 \( 1 - 9.63e3T + 2.86e7T^{2} \)
37 \( 1 - 3.86e3T + 6.93e7T^{2} \)
41 \( 1 + 1.52e4T + 1.15e8T^{2} \)
43 \( 1 + 3.14e3T + 1.47e8T^{2} \)
47 \( 1 - 7.94e3T + 2.29e8T^{2} \)
53 \( 1 + 6.92e3T + 4.18e8T^{2} \)
59 \( 1 - 2.89e3T + 7.14e8T^{2} \)
61 \( 1 + 1.53e4T + 8.44e8T^{2} \)
67 \( 1 + 1.72e4T + 1.35e9T^{2} \)
71 \( 1 + 4.64e3T + 1.80e9T^{2} \)
73 \( 1 + 8.03e4T + 2.07e9T^{2} \)
79 \( 1 - 9.85e4T + 3.07e9T^{2} \)
83 \( 1 + 2.14e4T + 3.93e9T^{2} \)
89 \( 1 + 8.02e4T + 5.58e9T^{2} \)
97 \( 1 - 9.44e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.753380914334292293770688814705, −8.130722047327605368755104433349, −6.58807593354103511060693164709, −6.10594504083271662978644238037, −5.32662573326790565714086951631, −4.33223149049205205190728745282, −3.55640177231178808213966855325, −2.63593940722763365282635288964, −1.52446324156223638479268671315, 0, 1.52446324156223638479268671315, 2.63593940722763365282635288964, 3.55640177231178808213966855325, 4.33223149049205205190728745282, 5.32662573326790565714086951631, 6.10594504083271662978644238037, 6.58807593354103511060693164709, 8.130722047327605368755104433349, 8.753380914334292293770688814705

Graph of the $Z$-function along the critical line