Properties

Label 2-1045-1.1-c5-0-103
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.836·2-s − 16.2·3-s − 31.3·4-s + 25·5-s + 13.5·6-s − 208.·7-s + 52.9·8-s + 19.6·9-s − 20.9·10-s + 121·11-s + 507.·12-s − 1.12e3·13-s + 174.·14-s − 405.·15-s + 957.·16-s − 340.·17-s − 16.4·18-s − 361·19-s − 782.·20-s + 3.37e3·21-s − 101.·22-s − 1.49e3·23-s − 858.·24-s + 625·25-s + 941.·26-s + 3.61e3·27-s + 6.51e3·28-s + ⋯
L(s)  = 1  − 0.147·2-s − 1.03·3-s − 0.978·4-s + 0.447·5-s + 0.153·6-s − 1.60·7-s + 0.292·8-s + 0.0810·9-s − 0.0661·10-s + 0.301·11-s + 1.01·12-s − 1.84·13-s + 0.237·14-s − 0.464·15-s + 0.934·16-s − 0.285·17-s − 0.0119·18-s − 0.229·19-s − 0.437·20-s + 1.66·21-s − 0.0445·22-s − 0.591·23-s − 0.304·24-s + 0.200·25-s + 0.273·26-s + 0.955·27-s + 1.56·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 0.836T + 32T^{2} \)
3 \( 1 + 16.2T + 243T^{2} \)
7 \( 1 + 208.T + 1.68e4T^{2} \)
13 \( 1 + 1.12e3T + 3.71e5T^{2} \)
17 \( 1 + 340.T + 1.41e6T^{2} \)
23 \( 1 + 1.49e3T + 6.43e6T^{2} \)
29 \( 1 + 2.46e3T + 2.05e7T^{2} \)
31 \( 1 - 1.35e3T + 2.86e7T^{2} \)
37 \( 1 - 3.66e3T + 6.93e7T^{2} \)
41 \( 1 - 2.12e3T + 1.15e8T^{2} \)
43 \( 1 - 1.18e4T + 1.47e8T^{2} \)
47 \( 1 + 2.80e4T + 2.29e8T^{2} \)
53 \( 1 + 1.85e4T + 4.18e8T^{2} \)
59 \( 1 + 1.34e4T + 7.14e8T^{2} \)
61 \( 1 - 4.85e4T + 8.44e8T^{2} \)
67 \( 1 - 6.30e4T + 1.35e9T^{2} \)
71 \( 1 - 5.54e4T + 1.80e9T^{2} \)
73 \( 1 + 5.12e4T + 2.07e9T^{2} \)
79 \( 1 - 8.29e4T + 3.07e9T^{2} \)
83 \( 1 - 9.51e4T + 3.93e9T^{2} \)
89 \( 1 + 6.15e4T + 5.58e9T^{2} \)
97 \( 1 - 1.15e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.122054200924930327740100511748, −7.944506697552230434345128672559, −6.83239460108719266296930358268, −6.20162866573546241236771217751, −5.35057904339225417651590188705, −4.62053929590923523268364668754, −3.49338117920873726065775990554, −2.34478727298973114514481942268, −0.64963293999573086298870848834, 0, 0.64963293999573086298870848834, 2.34478727298973114514481942268, 3.49338117920873726065775990554, 4.62053929590923523268364668754, 5.35057904339225417651590188705, 6.20162866573546241236771217751, 6.83239460108719266296930358268, 7.944506697552230434345128672559, 9.122054200924930327740100511748

Graph of the $Z$-function along the critical line