Properties

Label 2-1045-1.1-c5-0-250
Degree $2$
Conductor $1045$
Sign $-1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.77·2-s + 9.46·3-s − 28.8·4-s + 25·5-s − 16.7·6-s + 232.·7-s + 108.·8-s − 153.·9-s − 44.3·10-s + 121·11-s − 272.·12-s − 324.·13-s − 412.·14-s + 236.·15-s + 731.·16-s + 1.08e3·17-s + 272.·18-s − 361·19-s − 721.·20-s + 2.20e3·21-s − 214.·22-s − 3.84e3·23-s + 1.02e3·24-s + 625·25-s + 576.·26-s − 3.75e3·27-s − 6.70e3·28-s + ⋯
L(s)  = 1  − 0.313·2-s + 0.607·3-s − 0.901·4-s + 0.447·5-s − 0.190·6-s + 1.79·7-s + 0.596·8-s − 0.631·9-s − 0.140·10-s + 0.301·11-s − 0.547·12-s − 0.533·13-s − 0.562·14-s + 0.271·15-s + 0.714·16-s + 0.912·17-s + 0.198·18-s − 0.229·19-s − 0.403·20-s + 1.08·21-s − 0.0946·22-s − 1.51·23-s + 0.362·24-s + 0.200·25-s + 0.167·26-s − 0.990·27-s − 1.61·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $-1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 1.77T + 32T^{2} \)
3 \( 1 - 9.46T + 243T^{2} \)
7 \( 1 - 232.T + 1.68e4T^{2} \)
13 \( 1 + 324.T + 3.71e5T^{2} \)
17 \( 1 - 1.08e3T + 1.41e6T^{2} \)
23 \( 1 + 3.84e3T + 6.43e6T^{2} \)
29 \( 1 + 8.21e3T + 2.05e7T^{2} \)
31 \( 1 - 9.38e3T + 2.86e7T^{2} \)
37 \( 1 - 5.81e3T + 6.93e7T^{2} \)
41 \( 1 + 2.71e3T + 1.15e8T^{2} \)
43 \( 1 + 2.36e4T + 1.47e8T^{2} \)
47 \( 1 + 9.88e3T + 2.29e8T^{2} \)
53 \( 1 + 4.01e4T + 4.18e8T^{2} \)
59 \( 1 + 3.96e4T + 7.14e8T^{2} \)
61 \( 1 - 9.83e3T + 8.44e8T^{2} \)
67 \( 1 - 6.22e4T + 1.35e9T^{2} \)
71 \( 1 + 2.43e4T + 1.80e9T^{2} \)
73 \( 1 - 2.10e4T + 2.07e9T^{2} \)
79 \( 1 + 1.50e4T + 3.07e9T^{2} \)
83 \( 1 + 7.33e4T + 3.93e9T^{2} \)
89 \( 1 + 2.36e4T + 5.58e9T^{2} \)
97 \( 1 - 1.53e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.600712694159236770185295384630, −8.085346106948721295349125420041, −7.64953824721768448941125146378, −6.05291592413650695917133988680, −5.17547462017885194650771285262, −4.50291477235224281019496822996, −3.43548515081637631297882876232, −2.08254873018691426086204664348, −1.37080731847564323078236480826, 0, 1.37080731847564323078236480826, 2.08254873018691426086204664348, 3.43548515081637631297882876232, 4.50291477235224281019496822996, 5.17547462017885194650771285262, 6.05291592413650695917133988680, 7.64953824721768448941125146378, 8.085346106948721295349125420041, 8.600712694159236770185295384630

Graph of the $Z$-function along the critical line