Properties

Label 2-1045-1.1-c5-0-73
Degree $2$
Conductor $1045$
Sign $1$
Analytic cond. $167.601$
Root an. cond. $12.9460$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.13·2-s − 22.4·3-s + 51.4·4-s − 25·5-s + 205.·6-s + 200.·7-s − 177.·8-s + 262.·9-s + 228.·10-s + 121·11-s − 1.15e3·12-s + 280.·13-s − 1.83e3·14-s + 561.·15-s − 26.4·16-s − 1.24e3·17-s − 2.39e3·18-s − 361·19-s − 1.28e3·20-s − 4.51e3·21-s − 1.10e3·22-s + 1.18e3·23-s + 3.98e3·24-s + 625·25-s − 2.56e3·26-s − 429.·27-s + 1.03e4·28-s + ⋯
L(s)  = 1  − 1.61·2-s − 1.44·3-s + 1.60·4-s − 0.447·5-s + 2.32·6-s + 1.54·7-s − 0.979·8-s + 1.07·9-s + 0.722·10-s + 0.301·11-s − 2.31·12-s + 0.460·13-s − 2.50·14-s + 0.644·15-s − 0.0258·16-s − 1.04·17-s − 1.74·18-s − 0.229·19-s − 0.718·20-s − 2.23·21-s − 0.486·22-s + 0.468·23-s + 1.41·24-s + 0.200·25-s − 0.743·26-s − 0.113·27-s + 2.48·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1045 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1045\)    =    \(5 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(167.601\)
Root analytic conductor: \(12.9460\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1045,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(0.6029862015\)
\(L(\frac12)\) \(\approx\) \(0.6029862015\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + 25T \)
11 \( 1 - 121T \)
19 \( 1 + 361T \)
good2 \( 1 + 9.13T + 32T^{2} \)
3 \( 1 + 22.4T + 243T^{2} \)
7 \( 1 - 200.T + 1.68e4T^{2} \)
13 \( 1 - 280.T + 3.71e5T^{2} \)
17 \( 1 + 1.24e3T + 1.41e6T^{2} \)
23 \( 1 - 1.18e3T + 6.43e6T^{2} \)
29 \( 1 - 3.01e3T + 2.05e7T^{2} \)
31 \( 1 + 2.02e3T + 2.86e7T^{2} \)
37 \( 1 + 1.35e4T + 6.93e7T^{2} \)
41 \( 1 - 1.38e4T + 1.15e8T^{2} \)
43 \( 1 - 1.81e4T + 1.47e8T^{2} \)
47 \( 1 + 1.49e3T + 2.29e8T^{2} \)
53 \( 1 - 2.89e4T + 4.18e8T^{2} \)
59 \( 1 - 5.12e4T + 7.14e8T^{2} \)
61 \( 1 + 7.18e3T + 8.44e8T^{2} \)
67 \( 1 + 4.92e4T + 1.35e9T^{2} \)
71 \( 1 - 8.09e3T + 1.80e9T^{2} \)
73 \( 1 + 1.70e4T + 2.07e9T^{2} \)
79 \( 1 - 5.61e4T + 3.07e9T^{2} \)
83 \( 1 + 1.02e5T + 3.93e9T^{2} \)
89 \( 1 - 6.17e4T + 5.58e9T^{2} \)
97 \( 1 - 8.69e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.893831479588033179212621246933, −8.603291738253280596337583066330, −7.53435151832536798879655671011, −6.95556833986724508083321171223, −6.00113631181942617262372020159, −4.96688629998378530143123237434, −4.19587378872467042713401395573, −2.22644984063308570138230345009, −1.21974376269394513885577069184, −0.55162975323318731062174066879, 0.55162975323318731062174066879, 1.21974376269394513885577069184, 2.22644984063308570138230345009, 4.19587378872467042713401395573, 4.96688629998378530143123237434, 6.00113631181942617262372020159, 6.95556833986724508083321171223, 7.53435151832536798879655671011, 8.603291738253280596337583066330, 8.893831479588033179212621246933

Graph of the $Z$-function along the critical line